
POI Alias Discovery in Delivery Addresses using User Locations
Tianfu He

1,2
, Guochun Chen

2
, Chuishi Meng

2
, Huajun He

2
, Zheyi Pan

2
, Yexin Li

2
, Sijie Ruan

2

Huimin Ren
2
, Ye Yuan

2
, Ruiyuan Li

3,2
, Junbo Zhang

2
, Jie Bao

2
, Hui He

1
, Yu Zheng

2

1
Harbin Institute of Technology

2
JD Intelligent Cities Research

3
College of Computer Science, Chongqing University

TianfuDHe@foxmail.com;{chenguochun,meng.chuishi,hehuajun3,liyexin,renhuimin5}@jd.com

{yuanye48,ruiyuan.li,zhang.junbo,baojie3}@jd.com;hehui@hit.edu.cn;{zheyi.pan,sijieruan,msyuzheng}@outlook.com

ABSTRACT
People often refer to a place of interest (POI) by an alias. In e-

commerce scenarios, the POI alias problem affects the quality of

the delivery address of online orders, bringing substantial chal-

lenges to intelligent logistics systems and market decision-making.

Labeling the aliases of POIs involves heavy human labor, which

is inefficient and expensive. Inspired by the observation that the

users’ GPS locations are highly related to their delivery address, we

propose a ubiquitous alias discovery framework. Firstly, for each

POI name in delivery addresses, the location data of its associated

users, namely Mobility Profile are extracted. Then, we identify the

alias relationship by modeling the similarity of mobility profiles.

Comprehensive experiments on the large-scale location data and

delivery address data from JD logistics validate the effectiveness.

CCS CONCEPTS
• Information systems → Spatial-temporal systems; Data
mining.

KEYWORDS
Logistics, E-Commerce, Location Data Mining, Crowd-sensing, Ge-

ographic Information System, Urban Computing
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1 INTRODUCTION
People may refer to a place by an alias rather than the standard

name. Without specific background, the aliases are hard to guess

from the plain text. The alias problem is very common in many sce-

narios, especially in countries with poor promotion of address stan-

dardization, where people are not familiar with the Road&Numbers

or postcodes of the places. To be user-friendly, the e-commerce
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(a) POI Alias in Suzhou, China (b) The Grocery Sales Analysis Scenario

How many carrots consumed in 
Xiguyayuan, Suzhou?

Address Amount
B1, Xiguyayuan, 

Huqiu, Suzhou City

Xiguyayuan Langshilvzhou

B3, Xiguyayuan, 
Huqiu, Suzhou

Langshilvzhou, Huqiu 
District, Suzhou

… …

200kg

100kg

400kg

Semantic Result
200 + 100 = 300kg

Actual Result
200 + 100 + 400 

= 700kg

Figure 1: Example of Alias Problem.

and logistics platforms allow the user to write delivery address in

any form as long as the local package couriers can recognize it.

Therefore, aliases are very commonly used in delivery addresses,

bringing a substantial challenge for smart package delivery, offline

marketing, and precise sales analysis, as these businesses highly

rely on the consistency of address information. Taking the precise

grocery sales analysis scenario as an example. Figure 1a shows

a residential community with standard name “XiGuYaYuan”. To

get the sales volume of the community for further promotions or

offline advertising, the analyst counts all sales orders with deliv-

ery addresses containing “XiGuYaYuan” (i.e. the Semantic Result in
Figure 1b). This method fails to get the actual consumption of the

community, as some users prefer to write the alias, i.e. “LangShiL-

vZhou” in delivery addresses, which motivates us to discover the

alias relationship so that we can get theActual Result in Figure 1b by
aggregating the volumes related to the standard name and aliases.

Traditional methods rely heavily on manually labeling an alias

list for each place, which requires high-quality labor (e.g. local

vendors) who are familiar with the city, or taking surveys. These

methods cost laborious human efforts and are inefficient.

Intuition.With the advances of mobile computing and location-

based recommendation, user GPS locations are collected when

the user is browsing the app, which provides us with a unique

opportunity to discover the aliases. Figure 2 explains the intuition,

where three users have the standard name of POI-A, i.e. “POI-A” in

their address. Since people usually have more than one frequent-

visiting place, it is difficult to find the geolocation of POI-A by

the location data of the single User1(shown in the upper map). In

comparison, when we aggregate the GPS locations of all three users,

POI-A reveals: as these users tend to appear around POI-A, the place

where user GPS locations are gathering should be the geolocation

of POI-A(pointed out in the bottom map).

Following the intuition, for the users who write the alias of POI-

A, their GPS locations should also gather around the geolocation of

POI-A, i.e. they have similar GPS location distribution with those

who write the standard name. To this end, for each POI name(either

standard name or alias) in delivery address data, we first extract
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Locations in multiple places.
Hard to find POI-A.

Users with delivery
address `POI-A`

Under crowd wisdom,
POI-A reveals. 

Gathering
locations

POI-A

User 1

User 2

User 3

Locations
of user 1

Locations
of all users

Figure 2: Intuition of Mobility Profile.

the GPS locations of users whose addresses contain the POI name,

namely the Mobility profile of the POI name. Then, we compare the

mobility profile similarity between the standard name and candidate

aliases, and the alias candidates with high similarities regarded as

true aliases. The contributions are summarized as follows:

• We propose to use Mobility Profile, i.e. the GPS locations of
users associated with a delivery address, to discover the POI

aliases, easing the laborious POI alias labeling efforts. To the

best of our knowledge, it is the first work to use user location

data for POI alias discovery.

• We comprehensively design a set of methods to model the

mobility profile similarity, including the distance-based sim-

ilarity, and distribution-based similarity.

• We conduct comprehensive experiments on the real-world

delivery address data and user location data from JD logistics

in Suzhou and Beijing, China to validate the effectiveness of

the proposed framework.

2 OVERVIEW
2.1 Preliminaries

Definition 2.1 (POI Names in User Delivery Addresses). A delivery

address contains the province/city/district terms, and the detailed

POI name. Each user has a list of delivery addresses.

Definition 2.2 (POI Standard Name). Each POI is associated with

a standard name. We denote the standard names of all POIs in a

city as A = {𝑎1, 𝑎2, · · · , 𝑎𝑁 }.

Definition 2.3 (POI Alias). Each POI alias matches a POI standard

name, and they both refer to the same real-world POI. We denote

the aliases as A ′ = {𝑎′
1
, 𝑎′

2
, · · · , 𝑎′

𝑀
}.

Both standard names and aliases are called POI names in this paper.

Definition 2.4 (Associated User Set). We associate each POI name

with the users whowrite the POI name in his delivery addresses, and

we have associated user sets {U1,U2, · · · ,U𝑁 } for the 𝑁 standard

names, and {U ′
1
,U ′

2
, · · · ,U ′

𝑀
} for the𝑀 aliases.

Definition 2.5 (User Location Data). Under the authorization

of the user, the e-commerce apps collect users’ location infor-

mation when browsing the app with certain actions(e.g. seeking

for recommendations). We denote the location data of user 𝑢 as

𝐿(𝑢) = {𝑝1, · · · , 𝑝𝑘 , · · · }, with 𝑝𝑘 the GPS location in latitude-

longitude.

Definition 2.6 (Mobility Profile). For each POI name, we construct

its mobility profile as the GPS location points of the POI name’s

associated users. For 𝑎𝑖 with associated users U𝑖 :

C𝑖 =
⋃

𝑢𝑘 ∈U𝑖

𝐿(𝑢𝑘 ) . (1)

As a result we have {C1, C2, · · · , C𝑁 } and {C′
1
, C′

2
, · · · , C′

𝑀
} w.r.t

the 𝑁 standard names and the𝑀 aliases.

2.2 Problem Formulation
Given standard names A = {𝑎1, 𝑎2, · · · , 𝑎𝑁 } and aliases A ′ =

{𝑎′
1
, 𝑎′

2
, · · · , 𝑎′

𝑀
}, and user location data 𝐿(·), the task is to infer the

alias relationship matrix Î ∈ R𝑁 ∗𝑀
, with entry Î[𝑖, 𝑗] = 1 denoting

𝑎′
𝑗
is inferred as an alias of 𝑎𝑖 .

3 SOLUTION
Given a standard name 𝑎𝑖 and an alias candidate 𝑎′

𝑗
, the task is to

identify whether 𝑎′
𝑗
is a true alias of the standard name 𝑎𝑖 . With

their associated user location records extracted, i.e. C𝑖 and C′
𝑗
, we

should find an effective similarity metric between ⟨C𝑖 , C′
𝑗
⟩, so that

the true aliases can be identified by a threshold:

Î[𝑖, 𝑗] =
{
1 , if 𝜅 (C𝑖 , C′

𝑗
) > 𝜃𝜅 ;

0 , otherwise

, ∀𝑖, 𝑗 . (2)

𝜃𝜅 is the thresholdm, and the operator 𝜅 (·, ·) is the similarity metric.

We study two metrics: 1) 𝜅𝑑 , the distance-based similarity; and

2) 𝜅𝑝 , the distribution-based similarity.

3.1 Distance-based Similarity
When the standard name and alias pair ⟨𝑎𝑖 , 𝑎′𝑗 ⟩ refer to the same

POI, their geolocations should be the same or at least close to each

other. Inspired by Figure 2 that the geolocation of a POI name can

be inferred from the POI name’s mobility profile, we first extract the

mobility profile ⟨C𝑖 , C′
𝑗
⟩ for each pair, then compute the respective

geolocation, finally the similarity is computed as the geolocation

distance between the pair. Formally we have:

𝜅𝑑 (C𝑖 , C′
𝑗 ;𝜓 ) =

1

GeoDis(𝜓 (C𝑖 ),𝜓 (C′
𝑗
)) (3)

where GeoDis(·, ·) computes the geographical distance between

two latitude-longitude ponits, and𝜓 (·) is the mobility profile based

geolocation estimation function. We investigate two approaches

to estimate the geolocation: overall centroid 𝜓𝑔 and local region

centroid𝜓𝑙 .

3.1.1 Overall Centroid. The overall centroid simply compute the

centroid, i.e. the mean latitude-longitude values of all points in the

mobility profile. E.g. for C𝑖 :

𝜓𝑔 (C𝑖 ) = Centroid(C𝑖 ) . (4)
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3.1.2 local region Centroid. The overall centroid may bias towards

the outliers far from the target geolocation. In this approach, we

first capture a small local region where the points are gathering,

and gets the centroid of only the points in this local region. In this

paper, given a mobility profile, the local region is computed by

finding the 𝑑𝑙 ×𝑑𝑙 window that coversmaximum number of points.

Formally, the local region centroid for C𝑖 is:
𝜓𝑙 (C𝑖 ) = Centroid(C𝑖 ∩ 𝑆 (C𝑖 )), (5)

s.t. 𝑆 (C𝑖 ) = argmax

𝑆𝑘 ∈S
|C𝑖 ∩ 𝑆𝑘 |;

and S =
{
[𝑝.𝑥 , 𝑝.𝑥 + 𝑑𝑙 ] × [𝑝.𝑦, 𝑝.𝑦 + 𝑑𝑙 ]

��� 𝑝 ∈ R2
}
,

with S denoting all 𝑑𝑙 × 𝑑𝑙 windows, and 𝑆 (C𝑖 ) denoting the local

region of C𝑖 .

3.2 Distribution-based Similarity
For a POI, the users who receive packages there, who are typically

working/living there, usually have similar mobility such as visiting

the same one or more shops, bus stations, restaurants, etc., no mat-

ter if they write the standard name or an alias of the POI in their

delivery address. Therefore, we can also identify the alias relation-

ship by comparing the spatial distribution of the user locations, i.e.

comparing the spatial distribution between ⟨C𝑖 , C′
𝑗
⟩.

To compare the spatial distribution, we first rasterize the city’s

bounding box into 𝑁𝑔 × 𝑁𝑔
grids, and convert the mobility profile

into a density matrix M𝑔 ∈ R𝑁𝑔×𝑁𝑔
, with each entry counting

the number of user location points in the grid. Then, the discrete

distribution is further acquired by normalizing the density matrix.

For example, the distribution P𝑖 for C𝑖 is:
M𝑔

𝑖
[𝑟, 𝑐] = {𝑝𝑘 |𝑝𝑘 ∈ C𝑖 and 𝑝𝑘 is within grid-𝑟, 𝑐}, (6)

P𝑖 =
M𝑔

𝑖∑
𝑟,𝑐 M

𝑔

𝑖
[𝑟, 𝑐]

, (7)

and P′
𝑗
is computed analogously. Finally, the similarity metric be-

tween is formulated as the divergence between ⟨P𝑖 , P′𝑗 ⟩:

𝜅𝑝 (C𝑖 , C′
𝑗 ;𝛿) =

1

𝛿 (P𝑖 , P′𝑗 )
, (8)

where 𝛿 (·, ·) is the divergence function. We investigate two func-

tions in this paper: Kullback–Leibler divergence 𝛿𝑘𝑙 and Jaccard

distance 𝛿 𝑗𝑐𝑑 .

3.2.1 Kullback–Leibler(KL) Divergence. KL Divergence is the rela-

tive entropy of two distributions:

𝛿𝑘𝑙 (P𝑖 , P′𝑗 ) =
∑︁
𝑟,𝑐

P𝑖 [𝑟, 𝑐] · log
P𝑖 [𝑟, 𝑐]
P′
𝑗
[𝑟, 𝑐] . (9)

3.2.2 Jaccard Distance. In our settings, Jaccard distance is com-

puted by counting the overlapping portion of two distributions. P𝑖
and P′

𝑗
are considered overlapping in entry [𝑟, 𝑐] if both of them

are non-zero there. Formally:

𝛿 𝑗𝑐𝑑 (P𝑖 , P′𝑗 ) =
∑
𝑟,𝑐 JP𝑖 [𝑟, 𝑐] · P′𝑗 [𝑟, 𝑐] ≠ 0K · (P𝑖 [𝑟, 𝑐] + P′

𝑗
[𝑟, 𝑐])∑

𝑟,𝑐 (P𝑖 [𝑟, 𝑐] + P′
𝑗
[𝑟, 𝑐]) .

(10)

where J·K = 1 when the condition stands and 0 otherwise.

4 EXPERIMENT
4.1 Data Descriptions
The experiment is conducted on the datasets of Suzhou, Jiangsu,

China, and Daxing District, Beijing, China. Both datasets are col-

lected during the year 2019. The POI entities include residential

communities and office buildings. The details are as follows:

Suzhou. We collect the dataset of up to ten districts in Suzhou.

There are 14183 POI entities. We collect the dataset of around

340, 000 users, with over 210 million GPS location records and we

acquire 4197 labels in this region.

Daxing district, Beijing. In Daxing, we perform alias discovery

for 2212 POI entities, and we acquire 693 labels. The dataset covers

429, 000 users with 355 million GPS location records.

4.2 Experiment Settings
4.2.1 Evaluation Metric. The delivery address contains province/c-

ity/district terms, so it is trivial that the POI names from different

districts are not aliases. Therefore, we focus on the alias discovery

within each district. For each district, given the inferred alias rela-

tionship matrix Î ∈ R𝑁×𝑀
according to Section 2.2, we compare it

with the ground truth I ∈ R𝑁×𝑀
. F1-score is chosen to balance the

evaluation of precision and recall of the discovered aliases.

Precision =

∑
𝑖, 𝑗 Î[𝑖, 𝑗] · I[𝑖, 𝑗]∑

𝑖, 𝑗 Î[𝑖, 𝑗]
; Recall =

∑
𝑖, 𝑗 Î[𝑖, 𝑗] · I[𝑖, 𝑗]∑

𝑖, 𝑗 I[𝑖, 𝑗]

F1 =
2 · Precision · Recall
Precision + Recall

(11)

For Suzhou, we conduct cross-validation on districts. For each

round, we select the labels of eight districts for model training

and the rest two districts for evaluation. To investigate the gener-

alization ability, we directly apply the model trained on the entire

Suzhou dataset to Beijing for tests.

4.2.2 Baselines. We compare three text-based baselines T1-3, and

the four proposed methods M1-4:

• T1. Edit-Distance, which computes the minimum number

of edits needed to transform one string into the other.

• T2. ESIM [1], an effective short-sentence matching model.

• T3. Sen-BERT [2], which performs state-of-the-art results

on sentence-pair regression tasks using BERT.

• M1. Centroid, which uses 𝜅𝑑 (·, ·;𝜓𝑔) for Equation 2, as is

described in Section 3.1.1.

• M2. LocCent, which is detailed in Section 3.1.2.

• M3. KL-Div. The method in Section 3.2.1.

• M4. Jaccard, which is Section 3.2.2.

For T1 and M1-4, we select the thresholds that reach the highest

F1-scores for these methods. For M2, the local region size 𝑑𝑙 is

empirically chosen as 640 meters, and the partition size 𝑁𝑔
for

M3&4 is set as 50.

4.3 Effectiveness
4.3.1 Compare with Baselines. Table 1 gives the results of baselines
and our model. From the results, we can see that:

• The text-based methods get extremely poor results, which

implies that the aliases are hard to guess via plain text.
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Table 1: Experiment Results: Compared to Baselines

Suzhou Suzhou → Beijing

Methods Prec. Rec. F1 Prec. Rec. F1

T1. Edit-Dis 1.000 0.2 0.333 1.0 0.086 0.158

T2. ESIM 0.154 0.325 0.209 0.165 0.229 0.192

T3. Sen-BERT 0.204 0.449 0.280 0.229 0.327 0.269

M1. Centroid 0.765 0.298 0.429 0.789 0.236 0.363

M2. LocCent 0.817 0.431 0.564 0.774 0.323 0.456

M3. KL-Div 0.838 0.324 0.468 0.893 0.266 0.410

M4. Jaccard 0.806 0.432 0.562 0.853 0.331 0.477

• We also observe that the deep learning-based methods T2&3

are even out-performed by the simple edit distance (T1) in

Suzhou. The result tells that most aliases have neither obvi-

ous text similarity nor semantic similarity.

• The proposed mobility profile based methods M1-4, although

very straightforward, can outperform the methods T1-3 by a

lot. The results validate our intuition of constructingmobility

profiles for the POI names.

4.3.2 Cross-city Generalization Capability. Since the labeled data

requires a lot of human labor and is very precious, cross-city gen-

eralization ability is important: to avoid collecting the labels in

target cities, we hope the model trained on the source city to work

well the target cities. To validate the generalization capability, we

first learn the model with the entire dataset and labels of Suzhou.

Then, the model is directly applied to Daxing District, Beijing. The

results are in the right part of Table 1. We can see that, although the

proposed methods especially M2&4 still work relatively well, their

cross-city F1 scores drop down by a lot compared to their results

within Suzhou. In comparison, the performances of T2&3 do not are

more stable. The reason is clear: all methods except T2&3 simply

select the optimal thresholds, which may change across cities, while

the deep learning methods can extract much more latent features,

making the model more robust on cross-city generalization tasks.

0

0.2

0.4

0.6

20 36 50 100 150 200 300 500

F
1-

S
co

re

KL-Div KL-Div (Gen) Jaccard Jaccard (Gen)

Figure 3: Performance of Distribution-basedMethods under
Different 𝑁𝑔.

4.3.3 Different Resolutions for Distribution-based Method. The
choice of 𝑁𝑔

in Section 3.2 essentially determines the resolution of

the density matrix and can affect the performance. We try a variety

of 𝑁𝑔
’s from 20 to 500 and get the results in Figure 3. The Jaccard

distance is more effective in both single-city and cross-city tasks

compared to KL Divergence. Since KL Divergence can be affected by

zero-value entries, which arises as 𝑁𝑔
increases, the performance of

KL Divergence drops down. When 𝑁𝑔 ≤ 150, Jaccard’s F1 increases

by 𝑁𝑔
, with F1 at 0.621 when 𝑁𝑔 = 150, since higher resolution

helps distinguish the subtle differences of mobility profiles between

neighbor POIs. However, when 𝑁𝑔 > 150, Jaccard’s F1 decreases,

because that the mobility profiles of the standard name and its

true alias may not exactly overlap and are separated into different

fine-grained entries, causing low Jaccard values for true aliases.

5 RELATEDWORKS
Toponym Matching. Toponym matching is a common GIS prob-

lem that aims to match the POI names that refer to the same place.

Most of the research works investigate the string similarity mea-

surements, e.g. [4] tries to find appropriate string similarities for

toponymmatching. There are also someworks like [3] that use deep

learning models for matching. These methods assume matched to-

ponyms to be similar in text or semantics. However, the POI aliases

are hard to guess from plain text. Note that research work [5] lever-

ages the geocoding APIs of web map services to match toponym

pairs with close geolocations, which essentially takes advantage of

the build-in alias dictionary of the APIs, whereas our work aims to

construct such an alias dictionary for the cities.

6 CONCLUSION
In this paper, we present a novel data mining approach to discover

POI alias from large-scale e-commerce delivery addresses com-

bined with users’ GPS locations. The proposed method features

POI names with its mobility profile, and identifies the alias relation-

ship by measuring mobility profile similarity. Two types of similar-

ity metrics are investigated, namely distance-based similarity and

distribution-based similarity. Experimental results on real-world

data from Suzhou and Beijing, China, show that our method is able

to achieve f1-score at 0.621, which justifies the effectiveness and

cross-city generalization of our proposed method.
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