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ABSTRACT
Virus transmission from person to person is an emergency
event facing the global public. Early detection and isola-
tion of potentially susceptible crowds can effectively control
the epidemic of its disease. Existing metrics can not cor-
rectly address the infected rate on trajectories. To solve
this problem, we propose a novel spatio-temporal infected
rate (IR) measure based on human moving trajectories that
can adequately describe the risk of being infected by a given
query trajectory of a patient. Then, we manage source data
through an efficient spatio-temporal index to make our sys-
tem more scalable, and can quickly query susceptible crowds
from massive trajectories. Besides, we design several prun-
ing strategies that can effectively reduce calculations. Fur-
ther, we design a spatial first time (SFT) index, which en-
ables us to quickly query multiple trajectories without much
I/O consumption and data redundancy. The performance of
the solutions is demonstrated in experiments based on real
and synthetic trajectory datasets that have shown the effec-
tiveness and efficiency of our solutions.
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1. INTRODUCTION
Human to human virus-borne infections has been a public

health concern. A new coronavirus was named ”SARS-CoV-
2,” and the disease it caused was called ”Coronavirus Dis-
ease 2019” (abbreviated as ”COVID-19”) [25]. COVID-19
pandemic is an urgent emergency facing the world. In the
absence of a vaccine, early detection, early reporting, early
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isolation, and early treatment 1 have proven to be the most
effective measures to prevent the spread of the epidemic.

With the rapid development of mobile internet and lo-
cate service, massive spatio-temporal data have been gen-
erating from applications. Human activity trajectory is a
typical spatio-temporal data, including longitude, latitude,
and time. Given a trajectory Q of the confirmed patient,
Suspected Infected Crowds Detection (SICD) aims to de-
tect close contacts through the spatio-temporal correlation
of trajectories. As shown in Figure 1, we search the ordi-
nary people who have occurred within the spatio-temporal
range which can be infected with the location where the pa-
tient has appeared and then determine the probability of
infection rate based on their contact distance and duration.
SICD helps local governments to investigate suspected peo-
ple and find close contacts, isolate and protect them in time
to prevent further spread of the epidemic. For improving
the accuracy of SICD, it is necessary to consider the spatio-
temporal correlation in each location of Q to describe the
infection rate. The data volume of the underlying trajec-
tory database used for SICD is enormous. To avoid massive
memory consumption, we leverage a spatio-temporal index
to manage trajectories in the NoSQL database.

In the epidemiological analysis, analyzing the relationship
between people in spatial and temporal is a very standard
and important analytical method. By looking at the spa-
tial and temporal relationship, we can draw accurate close
contact conclusions. In the 19th century, Snow [21], stud-
ied spatio-temporal data such as maps and found that the
source of pollution in cholera cases was not air, but from
public pumps on Broad Street and transmitted through con-
taminated drinking water. At his appeal, authorities closed
and diverted pump valves to control cholera. The success-
ful prevention of cholera is directly related to the result of
spatio-temporal data analysis and is the most classic exam-
ple of spatio-temporal big data analysis.

We can acquire the multiple spatio-temporal data infor-
mation related to the risk of infection within the given spatio-
temporal ranges through the trajectory of human activity.
Moving trajectory is typical spatio-temporal data. By in-
vestigating the patient’s moving trajectory, we can know
who the patient is in close contact. In response to this de-

1http://dwz1.cc/mAz79Dq

1

ar
X

iv
:2

00
4.

06
65

3v
1 

 [
cs

.D
B

] 
 1

1 
A

pr
 2

02
0



Suspected Infected Crowds

Virus Carrier s Moving Trajectory

Figure 1: An example of Suspected Infected Crowds
Detection.

mand, Tang discovered object groups that travel together
from streaming trajectories [19]. In his study, in order to
find travel companions, the system needs to cluster the ob-
jects of each snapshot of the query trajectory and intersect
the clustering results, and retrieve the objects that move
together. It is an efficient system with high precision, and
it can discover crowds with a long companion. However, it
can not find crowds whose local companion is long in one
snapshot but total companion is short in all snapshots. Be-
sides, many scholars have done much research on the spatial
and temporal similarity between trajectories. Some of these
methods mainly focus on how to extend existing trajectory
similar search algorithms (e.g., ED, DTW, and Frchet [20]).
They have excellent performance for detecting duplicated or
redundant trajectories in the database. However, to ensure
accuracy, they require the consistency of the sampling rate
of the two trajectories to be relatively high, and they lack
the anti-noise ability. Some other trajectory similarity algo-
rithms study the spatio-temporal correlation. They calcu-
late spatial and temporal correlations separately and then
combine them into overall similarity. A liner combination
method (e.g., [16]) combines the spatial and temporal into a
spatio-temporal similarity metric. Other existing trajectory
similarities (e.g., [2, 3]) use a time interval to limit the re-
semblance of two trajectories. Unfortunately, they calculate
similarity on the entire trajectory. However, in the actual
data set, the human trajectory is not always successive and
may has a larger spatial and temporal range. Therefore,
in many applications, the trajectory must be segmented.
However, the local segment similarity of the trajectory is
not comprehensive in existing metrics. Hence, in this pa-
per, we propose a measure that weights every segment of
the trajectory, because the longer a segment of the query
trajectory stays, the more possible that others will meet it.
In each segment, we consider not only spatial nearing but
also temporal proximity in every location, which makes sure
the spatio-temporal closed location has a high infected rate.
COVID-19 [25] is an urgent emergency facing the world.
It has an incubation period. Thus, people infected with
COVID-19 do not immediately have severe symptoms after
they infect the human body, with an average of 5 to 6 days
and a range of 1 to 14 days. Coronavirus infection during
the incubation period is also infectious. Therefore, it is nec-
essary to confirm all GPS records of the confirmed diagnosis
from the prior incubation period, which is a large amount
of data with a large spatio-temporal range. However, most
of the existing solutions should load all data into memory,
which limits the scalability. In this paper, we first divide
the long and large trajectory into several sub-segments with
suitable length and spatio-temporal range. Then, we build

an XZ2T [9] index to manage large segments in the NoSQL
database via an efficient platform JUST [9], which guaran-
tees the scalability of our solutions. Many methods mainly
focus entirely on similarity. Thus, they are slow due to the
large consumption for calculating big trajectory similarity.
Therefore, recent researches (e.g., [17, 14, 16, 18]) have fo-
cused on some pruning strategies to save time. They build
indexes on trajectories to avoid computing all trajectories
similarity, which greatly accelerates query speed. In this
paper, we only search the smaller spatio-temporal range
of each segment to reduce the range of the candidate set
and propose some pruning strategies, which help reduce the
computation. In most scenarios, it is always to query close
contacts for multiple patients. Thus, we build an efficient
SFT index to reallocate segments with the similar spatio-
temporal range together, which effectively reduces the I/O
cost and data redundancy.

Using our algorithm, we helped Beijing find more than
500 high-risk close contacts within 20 days. Until March 1,
we assisted Suqian in discovering a quarter of newly diag-
nosed patients with COVID-19 in the city. Within China,
18 provinces and cities such as Guangzhou, Nanjing, and
Chengdu used this algorithm as part of the high-risk popu-
lation analysis system.

To sum up, the contributions of this paper are as follows.

• We propose a new infection rate (IR) metric that takes
into account both the spatial and temporal proximity
in all segments of trajectory and is suitable for the Sus-
pected Infected Crowds Detection (SICD). It can also
use to recognize similar trajectories, detect close con-
tacts, mine companion, and monitor high-risk groups.

• We store primary trajectories in the NoSQL database
and only need to search a small spatio-temporal range
data when it comes to a query trajectory, which re-
duces the memory consumption and guarantees the
scalability of our solutions.

• We leverage some effective pruning strategies to avoid
many invalid calculations.

• We develop an SFT index to reduce I/O communica-
tion and data redundancy.

• We conduct extensive experiments on trajectory sets
to validate the performance of the proposed algorithms.

The rest of the paper is organized as follows. Section 2
introduces the basic definitions and trajectory infected rate.
The framework of our solution is presented in Section 3.
The trajectory infected rate query is described in Section
4, while the trajectory infected rate join query for multiple
patients is in Section 5. The experimental results are pre-
sented in Section 6. Related work is illustrated in Section 7,
and conclusions and future works are shown in Section 8.

2. PRELIMINARIES
In this section, we introduce the basic definitions and

spatio-temporal operations in our present approaches.

2.1 Trajectory
The trajectory is a typical representation of a set of spatio-

temporal locations for the same user. A location in the
trajectory is of the form (longitude, latitude, time), and

2
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Figure 2: A sample of segmentation.

all locations of trajectory are sorted by its timestamp. A
trajectory is defined as follows.

Definition 1. A trajectory T of moving object is a time-
ordered locations< l1, l2, ..., ln >, where location li = (pi, ti),
i ∈ [1, n], with pi is a spatial point, ti is a timestamp, and
n is the location size.

2.2 Segmentation
In order to fully depict the virus carrier’s infected tra-

jectory, we must collect all of its spatio-temporal records
generated by GPS terminals from the incubation period to
isolation. However, records may not be collected continu-
ously, such as when the terminal is shut down for a while.
Thus, the spatial or temporal interval between the two near-
est records may be extremely large. If the entire trajectory
is stored as a whole, a sizeable spatio-temporal range is re-
quired to contain this trajectory, and collected records may
be intermittent that two nearest GPS records cannot be di-
rectly connected. Meanwhile, the spatio-temporal nearest
locations always have similar characteristics. Storage to-
gether can improve the efficiency of the infected rate calcu-
lation because data redundancy can be avoided. Therefore,
the trajectory must be segmented. In this paper, we use the
stay point detection algorithm [13] to segment the trajec-
tory. As shown in Figure 2, we divide trajectory into four
segments marked with red boxes, where the spatial distance
and time interval between any two locations in any segment
do not exceed fixed thresholds (e.g., 200m and 30minutes in
Figure 2), respectively.

Definition 2. A trajectory T can be represented by seg-
ments. T =< s1, s2, ..., sm >, where m is the segment size
of this trajectory, segment si =< li1, li2, ..., lik > is a sub-
trajectory, and segments are sorted by the timestamps of
their start locations.

2.3 Spatiotemporal Operations
In this paper, we focus on spatio-temporal operations over

virus carrier’s moving trajectories to link their close contact
users. Thus, in this part, we discuss spatio-temporal opera-
tions of our propose approaches.

Carriers of COVID-19 affect people with whom they have
close contact. Therefore, the factors of infected rate are re-
lated to the spatio-temporal distance between the ordinary
person and the patient. Thus, each position where the car-
rier appears has an influential spatio-temporal range.

Definition 3. Given a location l, a spatial infected range
threshold θd and a temporal infected range threshold θt.
STR(l, θd, θt) represents an influential spatio-temporal range
of location l. Formally,

STR(l, θd, θt) = {R|∀r ∈ R(|r.t−l.t| ≤ θt∧dist(r.p, l.p) ≤ θd)}

In the range STR(l, θd, θt) of location l, we calculate spatio-
temporal correlation of l for trajectory.

Definition 4. Given a location l, a trajectory T , a distance
threshold θd and a time threshold θt. The spatio-temporal
correlation is defined as follows:

st cor(l, T ) = max
v∈T∧v∈STR(l,θd,θt)

st dist(l, v), (1)

where st dist(l, v) is the spatio-temporal correlation between
l and a location v of trajectory T . Formally,

st dist(l, v) = λe
− dist(l.p,v.p)

θd + (1− λ)e
− |l.t−v.t|

θt , (2)

where parameter λ ∈ [0, 1] controls the relative importance

of the spatial and temporal correlation. dist(l.p,v.p)
θd

and
|l.t−v.t|

θt
normalize the effects of spatial distance and time

interval to the same range. Note, while trajectory T does
not intersect with STR(l, θd, θt), the spatiotemporal corre-
lation st cor(l, T ) is 0.

2.4 Trajectory Infected Rate

2.4.1 Segment Infected Rate
Given a segment s of virus carrier’s trajectory and a tra-

jectory T , the infected rate between s and T is defined as
follows:

IR(s, T ) =

∑
l∈s st cor(l, T )

|s| , (3)

where l is a location of s and |s| represents the number of
locations that s owns.

2.4.2 Trajectory Infected Rate
Given a virus carrier’s query trajectory Q and a trajectory

T , the infected rate between Q and T is defined as follows:

IR(Q,T ) =

m∑
i=1,si∈Q

P (si) ∗ IR(si, T ), (4)

where si is a segment of Q and P (si) represents the potential
infected probability of each segment in Q. The probability
P (si) is determined by time span in segment, on account of
more time the carrier stays more risk of infection the others
may have. Therefore, P (si) is defined as follows:

P (si) =
si.et− si.st+ 1∑m

j=1 (sj .et− sj .st+ 1)
, (5)

where m represents the number of segments in the query
trajectory Q, si.st represents the start time of segment and
si.et represents the end time of segment, respectively.

2.5 Problem Definitions
Given a query trajectory Q, a set of trajectories T and a

threshold θ, the trajectory infected rate query(IRQ) finds a
set of trajectories T′ from the set whose trajectory infected
rate exceeds θ, i.e., ∀T ∈ T′(IR(Q,T ) > θ).

Given a set of query trajectories Q, a set of trajecto-
ries T and a threshold θ, the trajectory infected rate join
query(IRJQ) finds a set of all trajectory pairs from the two
sets whose trajectory infected rate exceeds θ, i.e., ∀(Qi, Tj) ∈
Q 1 T(IR(Qi, Tj) > θ).

3
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Figure 3: The framework of our solutions.

3. FRAMEWORK
Figure 3 depicts the architecture of the trajectory infected

rate query, which consists of three processes: Data Prepro-
cessing, Indexing and Storing, and Infectivity Query.

3.1 Data Preprocessing
In many applications, trajectory preprocessing is not only

necessary for filtering noise but also crucial for indexing and
storing. As depicted in the bottom-most box of Figure 3, the
process of preprocessing contains two main tasks: 1) noise
filtering, which eliminates outlier GPS records that may be
caused by the weak signal of GPS terminals; 2) segmen-
tation, which breaks a long trajectory into suitable short
trajectories. This paper mainly focuses on the trajectory
indexing and infectivity query. For more details about tra-
jectory preprocessing, please refer to our previous work [13].

3.2 Indexing and Storing
As shown in the middle box of Figure 3, we use the XZ2T

index to organize the segment and then store it as a table
into the NoSQL database via JUST [9], which can efficiently
and conveniently manage big spatio-temporal data.

Spatio-temporal range query is a necessary step in our
algorithm. Indexing is essential for the processing of spatio-
temporal query. Thus, we build an XZ2T index on the seg-
ment to effectively support the spatio-temporal range query.

XZ2T index is an extension of the XZ2 index [4], which
projects a geographical polygon with a time range onto a
one-dimensional value. XZ2 index is based on XZ-Ordering,
a Space-Filling Curve for Spatially Extended Objects. It
uses a sophisticated coding scheme for a polygon, which
maps the polygon into the integer domain. As shown in
Figure 4 (a), XZ2 index divides the root element into four
sub-elements with equal size, which are numbered from 0 to
3. Then, the XZ2 index recursively numbers each sub-space
until the maximum resolution is reached. Finally, we can
get a sequence formed by successively traversing numbers.
A polygon is represented by the most appropriate element
or xelement of the xz2 index, which can completely cover
the polygon. The xelement is an enlarged area of the ele-
ment in xz2 index (i.e., the xelement of “210” represents the

(a) XZ2 index

time 10011000

0
21 23

2220

2

13

1

0
01 03

0200

33

1

2

(b) XZ2T index

0 2

1

222

223

220
22

221

21
210

12

t3

t2

t1

20

23

t4

10

11

Figure 4: The example of XZ2 and XZ2T index.

area covered by the element “21”, and the width and height
of t2 are lower than “210”. Thus, instead of “21”, we can
use “210” represents t2. Similarly, “12” represents t1, “221”
represents t3, “0” represents t4, respectively). However, XZ2
index only supports spatial data. Therefore, considering the
time dimension, the XZ2T index is designed, which allo-
cates each disjoint period an XZ2 index, as shown in Fig-
ure 4 (b). Specifically, given a segment’s spatio-temporal
range (mbr, st, et), we first calculate the period number bin
of st according Equ (6), then calculate its XZ2 index num-
ber by using XZ-ordering function XZ2(mbr). Finally, we
combine the period number and XZ2 index to indicate the
spatio-temporal range of segment. Note, our segmentation
algorithm guarantees the span of et − st not greater than
periodLen and et belongs to the same bin of st.

bin = Unit.between(t, epoch)/periodLen (6)

In Equ (6), epoch is the reference time (e.g., 1970-01-
01T00:00:00), and periodLen is the span of a period. Unit
represents the unit of time (e.g., day, week, month, year).

To support offline infectivity query and avoid all trajec-
tories is persisted in memory because memory resources are
expensive and insufficient, we store segments of trajectory
to NoSQL database (e.g., HBase) via JUST. The key of our
table is consisted by a shard, XZ2T index, and sid:

key = shard+XZ2T (s) + sid,

where shard is a hash number to achieve load balance; XZ2T
encodes the segment’s spatio-temporal information; sid is
the unique id of each segment.

3.3 Infectivity Querying
The top-most box of Figure 3 shows two tasks of infec-

tivity query, including Infected Rate Query(IRQ) and In-
fected Rate Join Query(IRJQ). IRQ finds trajectories that
had close contact with a virus carrier (see Section 4). IRJQ
finds trajectory pairs from two sets whose infectivity exceeds
θ (see Section 5). In the following sections, we introduce the
details of IRQ and IRJQ.

4. INFECTION RATE QUERY

4.1 Main idea
We propose a spatio-temporal correlation-based infectiv-

ity query. First, we break the long query trajectory Q to
suitable segments S. Second, we extract and extend the
spatio-temporal range of each segment. Third, we query all
infected segments covered by the spatio-temporal ranges of

4
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Figure 5: A sample of spatio-temporal query.

S from database and aggregate the same trajectory’s seg-
ments together (Section 4.2). Furthermore, we prune the
trajectories whose infected rate can not greater than θ. Af-
ter pruning, we calculate the infectivity between the remain
trajectories and Q. Finally, we filter the trajectories whose
infected rate is lower than θ out and return the results (Sec-
tion 4.3).

4.2 ST Query

4.2.1 Main idea
In this solution, we must query segments from database

with XZ2T-Index around each location of the query tra-
jectory. However, there are many locations need to access
database that cause the massive queries and data redun-
dancy. Thus, we cluster close locations to a spatio-temporal
range and use this range to query the data once from the
database.

The raw long trajectory may need a large spatial and tem-
poral range to cover it entirely. For example, a trajectory
may go to many places for ten days. Hence, we break the
trajectory where the spatial distance and time interval of
any two nearest locations exceeds the fixed thresholds. As
shown in Figure 5, the query trajectory Q (the trajectory
with blue in Figure 5) is divided into two segments (s1 and
s2). Each segment has a mbr (minimum bounding rectan-
gle, e.g., the red solid line rectangle of Figure 5) that covers
all locations and a time range that starts from the first loca-
tion’s time and ends of the last location’s time (e.g., the solid
red lines between q1.t and q3.t in Figure 5). Then, we ex-
tend the mbr outward θd (e.g., the red dotted line rectangle
in Figure 5) and enlarger the time range of θt (e.g., the red
dotted lines near q1.t and q3.t in Figure 5), where θd and θt
control the infected spatio-temporal range. Later we query
segments from the database via extended spatio-temporal
ranges. As shown in Figure 5, the query trajectory Q is di-
vided into two segments s1 and s2. Segments of trajectory
t1 and t2 are queried by s1 and t1 and t3 are queried by
s2, respectively. We group segments of the same trajectory
together. Finally, t1, t2 and t3 are the candidate trajectories
of the query trajectory Q.

4.2.2 Query from XZ2TTable
We store data in the NoSQL database. Each segment

is saved as the form of “(key, value)” with file dictionary
sort index, and the key consists of XZ2T index and other
information. Thus, generating accurate and smaller key
scan ranges for query processing can significantly reduce I/O
costs.

Key Scan Ranges Generation. First, we give a spatio-
temporal range of the query segment, which represents as
a time range and a spatial range. Second, we extract the
period numbers overlapped by the time range. Third, we
generate the spatial scan ranges calculated by the XZ2 in-
dex [4]. Later, for each period number, we execute the scans.
Finally, we refine the result to make sure that exactly in the
spatio-temporal field.

The spatial scan range is generated as follows: (1) Starting
the recursive access from the root node by the breadth-first
search; (2) if the current node intersects the spatial query
window partly, the index value of this node is added to the
scan queue and recursive access child nodes until arriving the
max resolution; (3) if the query window completely covers
the current node, we put the index range represented by it
and all its child nodes into the scan queue; (4) when the
leaf nodes intersect, the index values of the leaf nodes are
put into the queue; (5) if there is no intersecting node, the
node is skipped directly. Finally, we combine the consecutive
values in the scan queue to form the final scan range.

4.3 Pruning
The calculation of IRQ is time-consuming. Therefore, we

develop several pruning strategies to avoid unnecessary cal-
culations.

Lemma 1. Let s represents a segment of query trajectory
Q whose extended spatio-temporal range intersects with the
candidate trajectory T . T must satisfy Equ (7):∑

s∈Q∩T

P (s) ≥ θ (7)

Proof. Clearly IR(s, T ) ∈ [0, 1]. If T does not inter-
sect with s, IR(s, T ) equals 0, and the maximum value of
IR(s, T ) is 1. Thus, based on Equ 4, we have that

IR(Q,T ) =
∑
s∈Q

P (s) ∗ IR(s, T )

≤
∑

s∈Q∩T

P (s) ∗ IR(s, T ) +
∑

s∈Q6∩T

P (s) ∗ IR(s, T )

≤
∑

s∈Q∩T

P (s)

Thus, if
∑
s∈Q∩T P (s) < θ, the IR(Q,T ) < θ. Therefore,∑

s∈Q∩T P (s) must be equal or greater than θ.

Lemma 2. The IR(s, T ) must satisfy Equ (8):

IR(s, T ) ≥ θ − 1 + P (s)

P (s)
(8)

Proof. Let si represents a segment of Q. Based on
Equ 5, we have

∑m
i=1 P (si) = 1. Then by Equ 4, we have

IR(Q,T ) =

m∑
j=1

P (sj) ∗ IR(sj , T )

≤ P (si) ∗ IR(si, T ) +

m∑
j=1,j 6=i

P (sj)

≤ P (si) ∗ IR(si, T ) + 1− P (si)

Thus, if IR(si, T ) < θ−1+P (si)
P (si)

, then IR(Q,T ) < θ, and

thus trajectory T can be entirely pruned.
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Lemma 3. IR(s, T ) must satisfy Equ (9):

IR(s, T ) ≥
θ −

∑
qs∈Q∩T,qs 6=s P (qs)

P (s)
, (9)

where qs is the segment of Q.

Proof. By combining Lemmas 1 and 2, we have

IR(Q,T ) =
∑
sj∈Q

P (sj) ∗ IR(sj , T )

≤ P (si) ∗ IR(si, T ) +
∑

sj∈Q∩T,i 6=j

P (sj),

where si ∈ Q. Thus, if IR(si, T ) <
θ−

∑
sj∈Q∩T,i 6=j

P (sj)

P (si)
,

then IR(Q,T ) < θ, namely, the trajectory T can be entirely
pruned.

Lemma 4. Let si represent a segment which intersects
with the candidate trajectory T . Then

IR(si, T ) ≥
θ −

∑i−1
j=1 IR(sj , T ) ∗ P (sj)−

∑m
j=i+1,sj∈Q∩T P (sj)

P (s)
(10)

Proof. By combining Lemmas 1, 2 and 3, we have

IR(Q,T ) =

m∑
i=1,si∈Q

P (si) ∗ IR(si, T )

= IR(si, T ) ∗ P (si) +

i−1∑
j=1

P (sj) ∗ IR(sj , T )

+

m∑
j=i+1

P (sj) ∗ IR(sj , T )

≤ IR(si, T ) ∗ P (si) +

i−1∑
j=1

P (sj) ∗ IR(sj , T )

+

m∑
j=i+1,sj∈Q∩T

P (sj)

Thus, if IR(si, T ) <
θ−

∑i−1
j=1 IR(sj ,T )∗P (sj)−

∑m
j=i+1,sj∈Q∩T

P (sj)

P (si)
,

then IR(Q,T ) < θ. Therefore, trajectory T can be entirely
pruned.

4.4 Algorithm
In Algorithm 1, the infected rate query arguments are a

query trajectory Q, a threshold θ, and a candidate set T,

Algorithm 1 Infected Rate Query.

Input: The query trajectory, Q; The candidate trajectories,
T; A threshold, θ;

Output: Trajectories with infected rate exceed θ;
1: result = new ArrayList(); S = segmentation(Q);
2: for each Ti ∈ T do
3: //Lemma 1
4: sum = 0;
5: for each s in S ∩ Ti do
6: sum = sum+ P (s);
7: end for
8: if sum < θ then continue;
9: end if

10: totalIR = 0; remPS = sum; pruned = false;
11: for each s in S do
12: IRP = IR(s, T ) ∗ P (s);
13: if IRP < θ − 1 + P (s) then//Lemma 2
14: pruned = false;break;
15: end if
16: if s ∩ T 6= ∅ then
17: if IRP < θ − (sum− P (s)) then//Lemma 3
18: pruned = true; break;
19: end if
20: remPS = remPS − P (s);
21: end if
22: //Lemma 4
23: if IRP < θ − totalIR− remPS then
24: pruned = true; break;
25: end if
26: totalIR = totalIR+ IRP ;
27: end for
28: //filtering
29: if pruned = false and totalIR < θ then
30: result.add(Ti);
31: end if
32: end for
33: return result;

and the query result is a trajectory set of close contacts for
Q. Initially, we let an empty ArrayList to hold the result,
and S is a set of segments of Q. Then, for each scanned tra-
jectory Ti, we let IRP = IR(s, T ) ∗ P (s) simplify Lemmas
2-4. The lines 5-8 for Lemma 1, lines 12-15 for Lemma 2,
lines 17-19 for lemma 3, and lines 23-25 for Lemma 4. If Ti
does not satisfy any Lemmas 1-4, then we use the instruc-
tions (e.g., continue and break) to stop further computing
IRP of Ti (e.g., in line 8, the sum of P (s) is not greater
than θ, then we stop calculating IR(Q,Ti) and continue to
check the next trajectory Ti+1, and the IRP is lower than θ
in line 13, then break calculate the IRP of the left segments
of Q and start to check next trajectory). If Ti is not pruned,
then it is added to the result in line 30. Then in line 33 of
Algorithm 1 , we return the final result after all trajectories
of T have been checked and calculated.

5. JOIN SOLUTION

5.1 Basic Idea
To process plenty of trajectories infected rates, we de-

velop a join query solution, named Infected Rate Join Query
(IRJQ). Figure 6 depicts the architecture of IRJQ, which
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Figure 7: A sample of SFT index.

consists of three processes: Data Preprocessing, Candidates
Extraction, and Infectivity Exploration.

Data Preprocessing. As depicted in the top-most box
of Figure 6, we first filter noise locations of trajectories out.
After that, we extract segments of trajectories by the rules
described in Figure 2. Later, we use the XZ2T index to orga-
nize segments and then store them into the NoSQL database
via JUST. The details of the steps in data preprocessing are
described in Sections 3.1 and 3.2.

Candidates Extraction. The middlebox of Figure 6
shows the procedure of candidates extraction, which allo-
cates the coarse-grained high infect rate candidates to the
query set. First, we load the query set; Second, we detect
segments of this set; Third, we build an SFT-Tree (Spatial
First Time Tree) index for all segments, which can min-
imize queries and communication on a small of data re-
dundancy. Then, we query the candidates covered by the
spatio-temporal ranges of leaf nodes in the SFT-Tree. This
procedure will be a detailed introduction in Section 5.2.

Infectivity Exploration. The bottom-most box of Fig-
ure 6 shows the procedure of infectivity exploration. First,
we prune some candidates, which are not the close contacts;
Then, we calculate the infectivity of the segment. Mean-
while, we use a map to record some trajectory that can be
further pruned. Later, we group all infectivity of the same
trajectory’s segments, and calculate the trajectory infectiv-
ity; Last, we filter trajectories whose infectivity is lower than
θ. This procedure is described in detail in Section 5.3.

5.2 Candidates Extraction
Candidates Extraction procedure is based on the segmen-

tation algorithm, an SFT index strategy, and spatio-temporal
query. The goal of segmentation is to diminution the long
and large query trajectories on several individual segments.
We built an SFT index on all query segments, where seg-
ments with similar spatio-temporal range are placed in the
same SFT leaf node. Then, we extract candidate segments
from the database by the extended spatio-temporal range of
each leaf node of SFT. Finally, we get coarse-grained can-
didates from the database with low data redundancy and a
small I/O consumption.

SFT index. SFT (Spatial first Time index) is a two
layers index. The segments of the query set are allocated

to the leaf node of the SFT index with a suitable spatio-
temporal region. Dividing segments into different spatio-
temporal ranges can decrease I/O cost and reduce the size
of the candidate set when query. As shown is Figure 7,
the SFT index structure is established as follows. First,
we divide the spatial domain into four equal-sized regions,
numbered from 0 to 3. Next, each region is recursed until
reaching the maximum resolution. Then we build a time
tree for each leaf node of the spatial first tree. As depicted
in Figure 7 (c), data in each spatial region is indexed in
time using a one-dimensional R-Tree-like structure [8]. The
internal node of the time tree has a one-dimensional time
range and the MBR of all the leaf nodes it contains. The
leaf node store the segments and the spatio-temporal range
of all the segments.

For each segment, there is data with spatial and temporal
information. As shown in Figure 7 (a), we first allocate
the segments whose lower points of their MBR are located
in the same node of the quadtree to the leaf node. Then,
for segments in the same spatial node, we construct the T-
Tree according to the start times of their time ranges. The
index of the time layer is shown in Figure 7 (c). In the
actual construction process, in order to reduce the size of
the T-Tree, we improve its insertion and add the function of
merging consecutive time ranges. Assuming that the time
range [t1, t2] has reached T in T-Tree, a new time range
[t3, t3] also reaches T, and the two time ranges cross, then
we combine [t1, t2] and [t3, t4] together, delete the [t1, t2]
node and insert the [t1, t4] node, which not only reduces the
size of the T-Tree, but also facilitates merging time ranges.

When the data in a node of T-Tree reaches the threshold,
it will be split, e.g., TR7 and TR8 are crossed in time, but
their merged time range is more extensive than the thresh-
old. Thus they are regarded as two leaves, respectively. The
T-Tree split will be re-divided into two parts according to
the new time range, and then the T-Tree index will be re-
built.

ST Query. After building the SFT index, the segments
of the query set are distributed in leaf nodes of the SFT
index with individual spatio-temporal range. Therefore, we
start with the root node, and when accessing the leaf node,
we extract its spatio-temporal range and expand this range
to the infection range, and then query candidates from the
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database like Section 4.2.2.

Algorithm 2 Infected Rate Join Query.

Input: The query set Q, A threshold θ.
Output: All trajectory pairs form Q and database whose

infectivity exceeds θ
1: sft = new SFT (); //new index
2: for each Q ∈ Q do
3: S = segmentation(Q);
4: sft.insert(S)
5: end for
6: removed = new Map(),remain = new Map();
7: result = new ArrayList();
8: search(sft.root, removed,remain,result);
9: result.filter(removed, remain); //filtering.

10: finalResult = result.reduceByKey(v1 + v2);
11: return finalResult.filter(v ≥ θ);

5.3 Infectivity Exploration
The infected rate join query needs to return all pairs of

two sets. A trajectory Qi of the query set Q are divided into
several segments distributed in leaf nodes of the SFT index.
In Section 5.2, we have extracted candidates for each leaf
node. Thus, we should first calculate the segment infected
rate in each node where Qi has segment located. Then, we
merge all the segment infected rates between Qi and other
trajectories, respectively. However, the calculate of the in-
fected rate is time-consuming. Therefore, we use some prun-
ing strategies, which do not need to calculate the infected
rate of all candidates of Qi to exclude those trajectories that
are not close to Qi in spatial and temporal.

Pruning. In each leaf node with Qi, we first filter seg-
ments for Qi whose spatial or temporal distance exceeds θd
or θt. The pruning strategy Lemma 2 can also be used to
the infected rate join query, but we need to use two maps
to record which trajectories have been cropped and which
trajectories can be used for further calculations. Then, we
only need to calculate the trajectories in the remaining map
for Qi.

5.4 Algorithm
The pseudocode of IRJQ is shown in Algorithm 2 and

Algorithm 3. The query arguments are the query set Q
and a threshold θ in Algorithm 2. We first build an SFT
index sft for segments of the query set Q in lines 1-5 of
Algorithm 2. Then, we search from the root node of sft
through depth-first strategy. The search processing is shown
in Algorithm 3. In lines 1-24 of Algorithm 3 calculate the
IR between segments and candidates in the leaf node. If
the visited node is not the leaf node, then search the child
nodes while it has, as shown in lines 26-27. In line 2, we
call spatio-temporal query to extract candidates from the
basic database. For each segment s in the leaf node, we
scan candidates one by one. If the spatio-temporal of any
candidate c is not covered by s, then skip c. line 12, we
calculate IRP = IR(s, c) ∗ P (s). In line 13, we judge IRP
by lemma 2. If it lower than θ − 1 + P (s), then update
remain and removed map and continue to check the next
candidate, else we put the candidate in remain map and
record IRP for (s.id, c.id) in result. After visiting all leaf
nodes, in line 9 of Algorithm 2, we refine the result, where
candidates in removed map or not in remain map will be

Algorithm 3 Extract candidates and pruning function.

Input: A node of SFT index node; removed records the
pruned trajectory pair; remain records remain candi-
date trajectories; result records the value of segments
IRP.

Output:
1: if node.type = LEAF then
2: candidates = st query(node.mbr, node.tr, θd, θt)
3: for each s ∈ node.data do
4: for each c ∈ candidates do
5: // st filter return true when the spatial or

temporal distance exceeds θd or θt, else return false
6: if st filter(s, c) then continue;
7: end if
8: if remain 6= ∅ and !remain.has(s.id, c.id)

then continue;
9: end if

10: if remove.has(s.id, c.id) then continue;
11: end if
12: IRP = IR(s, c) ∗ P (s);
13: if IRP < θ − 1 + P (s) then // Lemma 2
14: if remain 6= ∅ then
15: remain.remove(s.id, c.id);
16: continue;
17: end if
18: remove.put(s.id, c.id)
19: continue;
20: end if
21: remain.put(s.id, c.id);
22: result.add((s.id, c.id), IRP );
23: end for
24: end for
25: else// search the children nodes.
26: search(node.ne);search(node.se);
27: search(node.sw);search(node.nw);
28: end if

Table 1: Trajectory Data Sets
Attributes MPG MPG2 MPG3 MPG4 MPG5
# Points 3,079,428 16,397,140 19,476,568 ... 25,635,424
# Traj. 160,840 33,680 194,520 ... 516,200

pruned. In lines 10-11, we reduce the result by key (key =
s.id + c.id) and then filter the final results out whose value
are lower than θ.

6. EXPERIMENTS
We have implemented our algorithms and conducted ex-

tensive experiments on real and synthetic spatial data sets
to verify our proposed techniques.

Datasets. To evaluate the efficiency and correctness, we
use the GPS records from the mobile phones, MPG 2 and
Synthetic data sets (MPG2, MPG3, MPG4, MPG5) which

2http://suo.im/69LJCp

Table 2: Default Parameters
λ θ θd θt Resolution Query Size

0.5 0.5 50m 120s 15 2,300 Traj.
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Figure 8: The effect of λ.
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Figure 9: The effect of θ.

Table 3: Pruning Effectiveness (Unit: ms)
IRQ IRQ UP IRJQ IRJQ UP

MPG 701 963 215 260
MPG5 2647 3182 318 394

are generated by copying & offsetting one to four times of
MPG to test the scalability of our solutions. As shown in
Table 1, there are 160,840 trajectories in MPG, with an
average of 19 points. The query trajectory set1 is a labeled
down-sampled data set of the MPG.

Setting. All of the algorithms were implemented in Java
and Scala. All the experiments were conducted on a clus-
ter of 5 nodes, with each node equipped with CentOS 7.4,
8-core CPU, 32GB RAM, and 1T disk. In our experiments,
we compare the run time and veracity of IRQ and IRJQ.
The run time is the average query time. The accuracy is
the portion of correctly labeled trajectories in the query re-
sult, and the recall is the number of query trajectories whose
query results are not empty. We analyze the effect of prefer-
ence parameter λ, precision threshold θ, distance threshold
θd, time threshold θt, query data size, and source data size
for IRQ and IRJQ. We also verify the effect of the different
resolution of quadtree on the IRJQ algorithm. Table 2 gives
the default parameters.

6.1 Pruning Effectiveness
We first analyze the pruning effectiveness of our algo-

rithms using the default parameters. The experimental re-
sults are shown in Table 3. We can see that the IRQ and
IRJQ have better performance than the unpruned algorithms
IRQ UP and IRJQ UP. The join algorithms (e.g., IRJQ and
IRJQ UP) outperform simple query algorithms (IRJQ and
IRJQ UP) by almost an order of magnitude on MPG and
MPG5. After pruning, IRQ saves 27% and 17%, and IRJQ
improves 27% and 29% query time on the sets of MPG, re-
spectively.

6.2 Effect of Preference Parameter λ

Figure 8 shows the effect of the preference parameter λ on
efficiency and accuracy. On the dataset MPG, the runtime of
IRJQ and IRJQ UP is around 200ms and not affected by the
varying of λ. IRQ is more effective than IRQ UP, and saves
about 200ms compare to IRQ UP. On the dataset MPG5,
the runtime of IRJQ is around 400ms and much faster than
IRQ. Then we discuss the recall and accuracy under the in-
fluence of λ. We only analyze the recall and accuracy of
IRQ because IRQ and IRJQ have the same accuracy. The
accuracy of IRQ varies with λ, which is lower at λ = 0.0 and
λ = 1.0 on dataset MPG because only the side affected by
spatial or temporal is considered. As the number of candi-
dates from the spatio-temporal query on the database does
not change but the final result has a little difference. Thus
the recall rate remains at around 0.7 on the dataset MPG.
However, on the dataset MPG5, the recall increases with
λ, because more trajectories are queried in the same spatial
region, which increases the number of the final results.

6.3 Effect of Threshold θ

Figure 9 shows the effect of precision threshold θ. On the
datasets of MPG and MPG5, the runtime of pruned algo-
rithms (IRQ and IRJQ) decreases with an increasing thresh-
old θ and unpruned algorithms (IRQ UP and IRJQ UP)
keep the approximately same value, which verify the effi-
ciency of our pruning strategies. The recall decreases with
the threshold because the larger θ, the fewer trajectories are
satisfied. Meanwhile, the accuracy rate still maintains at a
relatively high value.

6.4 Effect of Distance Threshold θd

Figure 10 shows the effect of distance threshold θd. The
running time increases as θd increases because both the can-
didates and the computation are increased. IRJQ’s run-
time only increases slightly, but the increase in IRQ is pro-
nounced. The spatio-temporal ranges infected by every lo-
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Figure 10: The effect of θd.
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Figure 11: The effect of θt.
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cation are enlarged with the increase of θd. Thus more can-
didates are selected in our algorithms, which increases the
recall.

6.5 Effect of Time Threshold θt

Figure 11 shows the effect of distance threshold θt. The
running time slightly increases as θt increases. The tempo-
ral range expands as θt increases, but the data covered by
each location does not increase significantly. Therefore, the
running time maintains at a relatively fixed value, and the
recall increases with a small numerical.

6.6 Effect of Query Size
Figure 13 shows the effect of query size. The query tra-

jectories from 460 to 2300, represented as 20% to 100%, re-
spectively. Note that unlike other times, the runtime here is
the total time to complete the calculation of all trajectories.
We can see that as the amount of data for query trajecto-
ries doubles, the cumulative runtime of IRQ and IRQ UP
almost doubles. Consequently, the total runtime of IRJQ
and IRJQ UP is still below 500 seconds, because we build
an efficient index on trajectories that effectively reduce the
number of time to access the database and greatly avoid
data redundancy.

6.7 Effect of Resolution
In Figure 12, we analyze the impact of the resolution of

the SFT index. We see that the resolution equals 15 per-
forms better than other resolutions. When the resolution is
equal to 14, the spatial-temporal range distribution in the
leaf nodes is more dispersed. Thus the spatial and temporal
range of a single query will be relatively large, which will
cause more data redundancy and some unnecessary data.
When the resolution is greater than 15, although the dis-
tribution of the spatio-temporal range in the leaf node is
very concentrated, it also means that it needs to query the
database more times, which increases the I/O overhead.

6.8 Scalability
Figure 14 shows the effect of basic dataset size. We gener-

ate five datasets with equal increments in turn, as shown in
Table 1. We represent MGP as 20%, MPG2 as 40%, MPG3
as 60%, MPG2 as 80%, and MPG5 as 100%, respectively.
We see that the increase of the data set has a great im-
pact on the IRQ, which owns to spatio-temporal query gets
several times of the candidate set, which increases the calcu-
lations. Although IRJQ’s query time has also increased, it
has not increased exponentially. It is attributed to the SFT
index, which makes the close spatio-temporal ranges query
only once on the database.

7. RELATED WORK

7.1 Trajectory Correlation Metrics
Many trajectory related metrics have been proposed [20,

1, 5, 24, 14, 6, 10, 26, 12, 22, 11], which can be roughly
classified as two types: (1) The point-based metrics, such
as the Euclidean distance (ED) [7], Dynamic Time Warp-
ing (DTW) [1] and Frchet [20]; and (2) The segment based
metrics, such as the metric in [23] and Longest Common
Subsequence (LCSS) [28]. In general, the above methods all
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Figure 13: The effect of query size.
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treat temporal attributes as simple time series. The tempo-
ral attribute is one of the important attributes. Combining
the spatial and temporal attributes can be used as a judg-
ment criterion for the correlation measure of trajectory.
Point-Based Metrics. Correlation measurement methods
based on trajectory points can be further divided into global
matching methods and local matching methods. Euclidean
distance [7] is mainly by calculating the Euclidean distance
between corresponding points between trajectories, and then
accumulating the sum as the final metric value. Euclidean
distance is the simplest. It only needs to be summed up,
and the time complexity is O(N). However, it also has seri-
ous limitations: (1) The sampling rate and trajectory points
must be consistent; (2) The principle of monotonic continu-
ity must be met, and local time distortion is not supported;
(3) Sensitive to noise. The Frchet distance [20] measure was
proposed by Frchet et al. It is usually described intuitively:
the dog rope distance when a person walks a dog. DTW [1]
locally stretches or scales the trajectories, so that trajec-
tories of different sampling rates and different lengths can
be compared. The DTW distance is the cumulative sum of
the distances between all the optimal matching trajectory
points.
Segment-Based Metrics. Based on the trajectory seg-
ment similarity measures, by segmenting the trajectories
and comparing the similarity of each segment separately, the
time complexity is greatly reduced. However, the local in-
formation of the trajectory is not fully considered. Thus the
accuracy is relatively low. Longest Common Subsequence
(LCSS) mainly considers similar parts between trajectories
as a measure of trajectory correlation, so it can skip some
trajectory points due to matching distance exceeding the
threshold, which makes it robust to noise. In [23], the tra-
jectory is divided into several segments, and then the divide-
and-conquer strategy is used to calculate the discrete seg-
ment Hausdorff or discrete segment Frchet distance. How-
ever, the distance measures they use do not adequately de-
scribe spatial and temporal proximity.

Our metric takes into account the spatial and temporal
correlation of each location at the same time and uses a
divide-and-conquer algorithm for the weighted trajectory
segments. It is not only appropriately describes the spatio-
temporal closed trajectories, but also greatly reduces the
complexity.

7.2 Trajectory Correlation Search.
Trajectory correlation searches are widely studied [14, 15,

18, 23, 12]. The procedure typically involves a definition
step and a query processing step. First, a metric is de-
fined to measure the spatial and temporal correlations be-

tween two trajectories. Second, an efficient strategy is de-
veloped to search spatiotemporally close trajectories for a
query trajectory. For example, the BCT [27] algorithm
proposed by Zheng uses Euclidean distance for trajectory
search. Rong et al. [12] proposed a similar measure for tra-
jectory segments and used a distributed framework. This
framework first divides trajectories into several segments
and then groups nearby segments to find common trajecto-
ries, which is helpful to reduce I/O consumption. Shang et
al. [14] presented a two-phase divide-and-conquer trajectory
similarity join framework. It first finds similar trajectories
for each trajectory. Then it merges the results to the final
result. Like [12], we proposed a clearer metric, and then
grouped segments that are closed spatially and temporally
with an efficient Spatial First Time (SFT) index. Further-
more, in order to speed up query time, many frameworks
have designed effective pruning strategies, which reduce the
search space. Many studies [14, 15] have analyzed the low
bounds of their metrics to reduce search nodes. In our al-
gorithm, we propose four effective prune strategies to avoid
unnecessary calculations.

8. CONCLUSION
In this paper, we studied a novel trajectory infection rate

based on spatio-temporal correlation, the goal of which is
to detect suspected infected crowds of COVID-19 and also
targets many applications such as close contacts detection,
companion mining, high-risk groups prediction and trajec-
tory similarity recommendation. We proposed a new trajec-
tory metric that accommodates misaligned trajectory points.
We first broke down the longer and larger trajectories into
several short and suitable segments and used an active spatio-
temporal index (XZ2T) to manage a large number of seg-
ments in the NoSQL database, which reduce memory con-
sumption and guarantee the scalability by avoid loading all
trajectories into memory. We then developed efficient al-
gorithms for segments with infected weight. We explored
several pruning strategies for our proposed algorithms to
avoid many calculations. For batch query, we designed an
SFT index that groups similar segments only once to access
the database to reduce I/O communication and data redun-
dancy. We then devised experimental studies on real and
synthetic datasets to verify the effectiveness and efficiency
of our algorithms.

Many exciting directions for future research exist. First,
it is significant to extend our algorithms for supporting top-
k close contacts query without a threshold θ. Second, it is
vital to use some sample data to determine the parameters
to be set in the algorithm.
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