
JUST-Traj: A Distributed and Holistic Trajectory Data
Management System (Demo Paper)

Huajun He1,2, Ruiyuan Li2∗, Jie Bao2, Tianrui Li1, Yu Zheng1,2
1Southwest Jiaotong University, Chengdu, China 2JD Intelligent Cities Research, Beijing, China

hehuajun@my.swjtu.edu.cn,trli@swjtu.edu.cn,{liruiyuan3,baojie3,zheng.yu}@jd.com

ABSTRACT
With the rapid development of the Internet of Things (IoT), massive
trajectories have been generated. Trajectory data is beneficial for
many urban applications. This demo presents a holistic trajectory
data management system based on distributed platforms, such as
Spark and HBase. It provides a variety of indexes to support vari-
ous spatio-temporal queries and analyses on massive trajectories
efficiently. Besides, it provides a convenient SQL engine to execute
all operations (storage, queries, analyses) through a SQL-like state-
ment. Finally, we open a web portal for developers, and demonstrate
different operations in the portal.

CCS CONCEPTS
• Information systems → Spatial-temporal systems; Query
languages for non-relational engines; Database query processing.

KEYWORDS
trajectory management, spatio-temporal query, trajectory analysis

ACM Reference Format:
Huajun He, Ruiyuan Li, Jie Bao, Tianrui Li, Yu Zheng. 2018. JUST-Traj: A
Distributed and Holistic Trajectory Data Management System (Demo Paper).
In ACM SIGSPATIAL’21, November 02–05, 2021, Beijing, China. ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Various sensing devices and applications have collected massive tra-
jectories of moving objects in recent years. For example, more than
1TB GPS logs are generated by over 60,000 couriers of JingDong
each day [14], and T-Drive [16] contains 790 million trajectories
generated in Beijing over only three months. Trajectory data is
beneficial for many urban applications, e.g., traffic planning [7],
reachability analysis [8], and epidemic prevention [6]. Taking ad-
vantage of distributed platforms is one of the best ways to manage
large-scale trajectory data efficiently.

Existingworks. In the last decade, existingworks [1, 3, 4, 12, 15]
leverage distributed computing platforms, e.g., Hadoop and Spark,

∗Ruiyuan Li is the corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACM SIGSPATIAL’21, November 02–05, 2021, Beijing, China
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

to query and analyze massive trajectories. First, they adopt a strat-
egy (e.g., STR) to assign trajectories into partitions. Then, they build
a local index in each partition and a global index over all partitions
to efficiently support spatio-temporal queries and analyses. How-
ever, they are arduous to support real-time data updates because
they may spend much time readjusting the index structure and
re-balancing the partitions when inserting a lot of new data. Thus,
they are hard to scale up. The distributed NoSQL (Not Only SQL)
data stores, such as HBase, are widely used to manage massive
data in the disk. It can query data from the vast dataset efficiently
and re-balance data nodes automatically. However, they do not
support trajectory data analyses natively. Besides, applications al-
ways need various queries and analyses, which may require many
operations on different platforms, e.g., querying data from HBase
and analyzing data on Spark, struggling for a convenient way.

Our solution. Building on our previous works (i.e., JUST [9]
and TrajMesa [10, 11]), we develop a distributed and holistic trajec-
tory data management system, namely JUST-Traj. JUST provides a
unified platform based on the Spark and NoSQL data store, which
can provide spatio-temporal data queries and analytics through a
convenient SQL engine. TrajMesa provides three spatio-temporal
indexes to efficiently store and query trajectories on a NoSQL data
store (i.e., HBase).

The advantages of our system are summarized as follows:

• JUST-Traj is a distributed and holistic systemwith an efficient
management of massive trajectory data.

• JUST-Traj provides a complete SQL engine to conveniently
operate (i.e., store, query, analyze) massive trajectories.

• We have implemented JUST-Traj and provide an online sys-
tem to developers [5]. To the best of our knowledge, JUST-
Traj is the first full-fledged (i.e., supporting storage, query,
analytics, and SQL engine) online system for big trajectory
data management.

The rest of this paper is organized as follows. Section 2 gives
an overview of JUST-Traj. Section 3 stores trajectories into the
NoSQL database. Section 4 introduces queries provided by JUST-
Traj. Section 5 shows analytics of JUST-Traj. Section 6 describes the
SQL engine. Section 7 gives the demonstration.

2 OVERVIEW
Figure 1 gives an overview of JUST-Traj, which contains four core
components: (1) storage (Section 3), JUST-Traj stores trajectories
into the NoSQL database by three steps, i.e., pre-processing, index-
ing, and storing; (2) query (Section 4), JUST-Traj provides many
useful spatio-temporal queries on trajectories; (3) analytics (Sec-
tion 5) provides many useful analysis operations for urban applica-
tions, e.g., processing, aggregation, stay point detection, clustering,

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

ACM SIGSPATIAL’21, November 02–05, 2021, Beijing, China Huajun He et al.

S
to

ra
g

e
S

to
ri

n
g

key=shard+XZ++tid; shard+oid +t_index; shard+XZ+T+tid.

key value

XZ2T Table
Q

u
er

y

key value

XZ+ Table
A

n
a

ly
ti

cs

Noise Filtering Interpolation

P
ro

ce
s
in

g

Map MatchingSegmentation

ClusteringStay Point Close-contactsProcessing

Segmentation

t
ID Temporal Spatial Range Similarity

τ1
Q

kNN

Q

Spatio-temporal

t

DDL

DML

DQL

DAL

SQL

S
Q

L
 E

n
g

in
eJ

U
S

T
-T

ra
j

Aggregation

max
100

conutmin

A
p

p
li

ca
ti

o
n

s

key value

IDT Table
In

d
e
x
in

g

XZ2
+
T

Web Portal

Epidemic Prevention

Traffic Flow Prediction

Driver

GPS Logs

Reachability Query

Mobile Tower Data

Sharing Bike Data

Taxi Trajectory Data

Satellite Data

S
o

u
rces time

period1

XZ2
+

time
period2

time
periodn

XZT

0 t

ts te

0

t/2

t/2t/4

01

XZ2
+

PosCode(tr) = (0011)
(b) PosCode

2

1

tr

(a) XZ-Ordering

00

01

02

03

30

31

32

33

①

③

⓪

②

(c) XZ2+
4 bits8 bytes

PosCodeXZ2
0 t

3t/4

Figure 1: Overview of JUST-Traj.

and close-contacts tracking; (4) SQL engine (Section 6) implements
a complete SQL engine with many out-of-the-box operations preset,
based on which all operations (i.e., storage, query and analytics)
can be performed through a SQL-like query statement.

3 STORAGE
As shown in Figure 1(Storage), JUST-Traj pre-processes (Section
3.1) and indexes (Section 3.2) raw trajectories in Spark, then stores
(Section 3.3) massive trajectories into HBase.

3.1 Pre-processing.
It is essential to pre-process trajectory, as the data noise and sam-
pling rate in the raw GPS logs may affect the accuracy and per-
formance of applications. JUST-Traj supports four frequently-used
operations to process trajectories, i.e., noise filtering, segmenta-
tion, interpolation, and map matching. Notably, the details of pre-
processing can refer to our previous work [13].
Noise Filtering filters abnormal GPS logs, e.g., the points drift sig-
nificantly out of a trajectory, as the inescapable error of many GPS
terminals. If we do not remove the error points in the trajectory,
applications may suffer problems in data analysis tasks.
Segmentation breaks a trajectory into several segments. One ter-
minal could generate a large number of GPS points without in-
terruption, but only a part of points will be used in querying and
analyzing. Thus, segmentation could reduce the computational
complexity when executing data analysis tasks.
Interpolation inserts new points into a trajectory, as GPS termi-
nals may neglect some important logs (e.g., the battery is low).
Map Matching projects a raw trajectory onto the road network.
Therefore, it is essential for many applications based on the road
network, e.g., traffic flow prediction and reachability query.

3.2 Indexing.
Indexing is vital for spatio-temporal queries, which can improve
the efficiency of extracting data from the database. For example,
JUST-Traj provides three spatio-temporal indexes for trajectories.
(1) XZ2+, which is a fine-grained index for efficiently querying the

trajectory from the database. It uses an index space of XZ-Ordering
(XZ2) [2] to represent the minimum bounding rectangle (MBR) of
a trajectory and a position code to describe the shape of it;
(2) XZT. A trajectory has a time range from the start point to the
end point. We index the time range of a trajectory by the temporal
range index (XZT) proposed in TrajMesa [10], which helps JUST-
Traj to query trajectories within a given time range;
(3) XZ2+T, which is a spatio-temporal index for querying trajec-
tories by a given spatio-temporal range. We first split the time
dimension into multiple disjoint time periods, then construct an
individual XZ2+ index in each time period.

More details of indexes can refer to our previous work [10].

3.3 Storing.
We store the cleaned and indexed trajectories into the NoSQL data-
base using the form of key-value. First, we generate different kinds
of keys that contain the spatio-temporal information of a trajectory,
as shown in Figure 1(Storage)(Storing). Then, we compress the value
of a trajectory into one column, which reduces the storage size and
the I/O overhead. After that, we store the key-value pairs of the
trajectory into the indexing tables for the later queries. We use the
field traj to represent the value of a trajectory and execute query
and analysis operations on that field.

4 QUERY
In this section, we introduce the fundamental trajectory queries
provided by JUST-Traj.
ID Temporal Query. It retrieves trajectories by an object ID and
a temporal range, which could help managers to know the detailed
trajectory of a particular driver in a given temporal range, e.g.,
finding the trajectory generated by the taxi “1001” from 8:00 to
10:00 in a day.
Spatial Range Query. It finds trajectories by their relationship
with a given spatial range, e.g., finding all trajectories that traversed
or were fully contained in Times Square.
Spatio-temporalQuery. It searches trajectories by a spatio-temporal
range, e.g., finding all trajectories passing a railway station area

JUST-Traj: A Distributed and Holistic Trajectory Data Management System (Demo Paper) ACM SIGSPATIAL’21, November 02–05, 2021, Beijing, China

C
o

p
ro

ce
ss

o
r

Scanner

Spark SQL

Parser

and Validator

Operator

Expressions

Query

Optimizer

Expressions

Builder

Metadata Providers

Spatio-temporal

Indexes(CBO)

Rules(RBO)

JU
S

T
-T

ra
j

S
Q

L
 E

n
g

in
e

Server Apache Calcite

Driver

Figure 2: The Architecture of SQL Engine.

from 15:00 to 17:00 in a day.
Other Queries. JUST-Traj supports a variety of special queries
for trajectories, e.g., similarity query finds trajectories similar to a
given trajectory and kNN query finds top-k similar trajectories.

5 ANALYTICS
JUST-Traj provides many out-of-the-box data analysis functions
for trajectories, which facilitates the development of applications.
Figure 1(Analytics) shows five popular trajectory data analyses pro-
vided by JUST-Traj, i.e.,
Processing. Although we can pre-process trajectories before stor-
ing, parameters of algorithms could be adjusted when analyzing.
That is, JUST-Traj also supports the processing in analytics stage;
Aggregation. JUST-Traj provides many aggregation operations,
e.g.,𝑚𝑎𝑥 (),𝑚𝑖𝑛(), 𝑐𝑜𝑢𝑛𝑡 ();
Stay Point Detection. Moving objects tend to stay due to certain
events, such as vehicles staying for refueling, couriers staying for
delivery. By analyzing the place that a moving object stays, we can
infer some places of interest, e.g., the delivery addresses;
Clustering. It is one of the basic methods to explore the movement
patterns of groups;
Close-contacts tracking. It finds people who had close contact
with an abnormal person. It is vital for many applications, e.g.,
epidemic prevention [6] and companion detection.

6 SQL ENGINE
It is troublesome for users to execute operations on different plat-
forms, e.g., querying data from HBase but analyzing data in Spark.
JUST-Traj implements a complete SQL engine with many out-of-
the-box operations preset by extending Apache Calcite (Section
6.1). Based on that, all operations (i.e., storage, query, and analytics)
can be performed through a SQL-like query statement (Section 6.2).

6.1 Architecture
Figure 2 displays the architecture of our SQL engine. JUST-Traj
provides a Driver for developers to interact with the SQL engine.
The Server sends and receives data through the JDBC or RESTful
API to the Driver. We parse and validate the SQL by integrating
the SQL syntax of Section 6.2 into Antlr4. After that, we generate

the regular or spatio-temporal operator expressions. Then, JUST-
Traj improves the CBO and RBO of Calcite using spatio-temporal
indexes to optimize the queries. Finally, JUST-Traj can generate a
scanner to extract trajectories from HBase or through Spark SQL
to execute queries and analyses on massive trajectories. Notably,
JUST-Traj puts all spatio-temporal operations into the coprocessor
of HBase, which significantly improves the query efficiency.

6.2 SQL
Our SQL engine consists of four types of statements to operate the
database.
(1) DDL, which is the data definition language to create and drop
tables, e.g., JUST-Traj uses the following statement to create a tra-
jectory table:

1 CREATE TABLE < t a b l e name> (< f i e l d name> T r a j e c t o r y)
2 WITH (<key− va lue s >) ;

where <field name> is the field name of a trajectory and <key-
values> sets the configuration (e.g., enable or disable spatio-temporal
indexes, JUST-Traj acquiescently enables all indexes) of the table.
(2) DML. It loads data from multiple sources into JUST-Traj. For
example, we can load data using the following statement:

1 LOAD <sour c e type >: < f i l e path > TO JUST : < t a b l e name>
2 CONFIG { < the f i e l d mapping r e l a t i o n s h i p > } ;

where <source type> could be HDFS, HIVE, KAFAK. CONFIG pro-
vides the field mapping from the source to the JUST-Traj table.
(3) DQL. It selects trajectories from tables. JUST-Traj provides spa-
tial or spatio-temporal queries: spatial range query, spatio-temporal
range query, ID temporal query, similarity query, kNN query. For
example, the SQL of the spatial range query is as follows:

1 SELECT ∗ FROM < t a b l e name>
2 WHERE s t _w i t h i n (t r a j , st_makeBBox (lng1 , l a t 1 , lng2 , l a t 2) ;

where st_makeBBox is a spatial range formed by two points (lng1,
lat1) and (lng2, lat2)
(4) DAL is a particular statement provided by JUST-Traj for tra-
jectory data analyses, e.g., processing, aggregation, stay point de-
tection, clustering, close-contacts detection. The SQL statement of
DAL is as follows:

1 SELECT < ana l y z i n g ope r a t i on >(t r a j , { < parameter s > })
2 FROM < t a b l e name > ;

where, analyzing operation is the name of analysis, parameters set
the corresponding parameters. Section 7.2 gives two examples.

7 DEMONSTRATION
We open an online web portal for executing JUST-Traj SQL (Sec-
tion 7.1). We demonstrate JUST-Traj using trajectories from lorries
of Guangzhou, China, and taxis of Guiyang, China. Two holistic
scenarios are demonstrated in Section 7.2.

7.1 Web Portal
As shown in Figure 3, the web portal of JUST-Traj has three panels:
(1) table panel, which manages the created tables; (2) SQL panel,
which provides an SQL editor; and (3) result panel, which visualizes

ACM SIGSPATIAL’21, November 02–05, 2021, Beijing, China Huajun He et al.

Result Panel

SQL Panel

Table Panel

Display Forms

Figure 3: The Web Portal of JUST-Traj [5] (http://just-traj.
urban-computing.com).

(a) Raw Trajectories (b) Stay Points

Figure 4: The Result of Stay Point Detection.

the result by multiple display forms, i.e., table view, chart view (i.e.,
histogram and line chart), and map view.

7.2 Scenarios
7.2.1 Storage. (1)We first create a trajectory table, namely traj_table:

1 CREATE TABLE t r a j _ t a b l e (t r a j T r a j e c t o r y) ;

where 𝑡𝑟𝑎 𝑗 is the field name that denotes a trajectory in JUST-Traj.
(2) Then, we load trajectories from HDFS into JUST-Traj:

1 LOAD HDFS : ' / t r a j e c t o r i e s ' t o JUST : t r a j _ t a b l e (
2 o id 0 ,
3 t ime to_ t imes tamp (3) ,
4 po i n t s t_makePo in t (1 , 2)
5) ;

where ‘/trajectories’ is the path of trajectories, lines from 2 to 4 are
the field mappings.

7.2.2 Stay Point Detection. In this scenario, we detect stay points
from the results of a spatio-temporal query. A stay point is the
location where a driver stays over a given time threshold (minStay-
TimeInSecond), and the location is a spatial region whose maximum
distance is not greater than a distance threshold (maxStayDisIn-
Meter). The underlying locations of stay points could be the delivery
addresses. The details of more parameters have been introduced in
our handbook [5]. The SQL is as follows:

1 SELECT s t _ t r a j S t a y P o i n t (t r a j ,
2 ' { " maxS tayDi s t InMete r " : 1 0 ,
3 " minStayTimeInSecond " : 6 0 } ')
4 FROM
5 t r a j _ t a b l e
6 WHERE
7 s t _w i t h i n (t r a j _ l i n e s t r i n g (t r a j) ,
8 st_makeBBox (1 1 3 . 0 , 2 3 . 0 , 1 1 3 . 5 , 2 3 . 6))
9 and t r a j _ s t a r t T im e (t r a j) >= '2014 −03 −13 0 7 : 0 4 : 5 1 '
10 and t r a j _ endT ime (t r a j) <= '2014 −03 −16 0 8 : 0 4 : 5 1 ' ;

Lines from 7 to 10 take a spatio-temporal range to query trajectories
from the database. Lines from 1 to 3 execute the Stay Point Detection

operation on the extracted trajectories, where lines from 2 to 3 are
parameters of Stay Point Detection. Figure 4 displays the results.

7.2.3 Noise Filtering. In this scenario, we define the point whose
speed exceeds the maximum limited speed (maxSpeedMeterPerSec-
ond) as a noise point. More parameters of noise filtering can refer
to our handbook [5]. The SQL is as follows:

1 SELECT s t _ t r a j N o i s e F i l t e r (t r a j ,
2 ' { " maxSpeedMeterPerSecond " : 2 0 . 0 } ')
3 FROM
4 t r a j _ t a b l e
5 WHERE
6 t r a j _ o i d (t r a j) = ' 1 1 9 7 4 0 4 4 4 3 ')
7 and t r a j _ s t a r t T im e (t r a j) >= '2018 −07 −03 1 4 : 3 3 : 2 7 '
8 and t r a j _ endT ime (t r a j) <= '2018 −08 −03 1 4 : 3 3 : 2 7 ' ;

Lines from 6 to 8 take a ID temporal query to extract trajectories
from the database. Lines from 1 to 3 execute the Noise Filtering
operation on the extracted trajectories. Figure 5 shows the results.

(a) Raw Trajectories (b) Cleaned Trajectories

Figure 5: The Result of Noise Filtering.

REFERENCES
[1] Louai Alarabi. 2018. Summit: a scalable system for massive trajectory data

management. In SIGSPATIAL. 612–613.
[2] Christian BÖxhm, Gerald Klump, and Hans-Peter Kriegel. 1999. Xz-ordering: A

space-filling curve for objects with spatial extension. In SSTD. Springer, 75–90.
[3] Xin Ding, Lu Chen, Yunjun Gao, Christian S Jensen, and Hujun Bao. 2018. Ul-

traman: a unified platform for big trajectory data management and analytics.
Proceedings of the VLDB Endowment 11, 7 (2018), 787–799.

[4] Ziquan Fang, Lu Chen, Yunjun Gao, Lu Pan, and Christian S Jensen. 2021. Dra-
goon: a hybrid and efficient big trajectory management system for offline and
online analytics. The VLDB Journal 30, 2 (2021), 287–310.

[5] Huajun He. 2021. JUST-Traj. http://just-traj.urban-computing.com/.
[6] Huajun He, Ruiyuan Li, Rubin Wang, Jie Bao, Yu Zheng, and Tianrui Li. 2020. Ef-

ficient suspected infected crowds detection based on spatio-temporal trajectories.
arXiv preprint arXiv:2004.06653 (2020).

[7] Tianfu He, Jie Bao, Ruiyuan Li, Sijie Ruan, Yanhua Li, Chao Tian, and Yu Zheng.
2018. Detecting Vehicle Illegal Parking Events using Sharing Bikes’ Trajectories..
In SIGKDD. 340–349.

[8] Ruiyuan Li, Jie Bao, Huajun He, Sijie Ruan, Tianfu He, Liang Hong, Zhongyuan
Jiang, and Yu Zheng. 2020. Discovering Real-Time Reachable Area Using Trajec-
tory Connections. In DASFAA. Springer, 36–53.

[9] Ruiyuan Li, Huajun He, Rubin Wang, Yuchuan Huang, Junwen Liu, Sijie Ruan,
Tianfu He, Jie Bao, and Yu Zheng. 2020. Just: Jd urban spatio-temporal data
engine. In ICDE. IEEE, 1558–1569.

[10] Ruiyuan Li, Huajun He, Rubin Wang, Sijie Ruan, Tianfu He, Jie Bao, Junbo
Zhang, Liang Hong, and Yu Zheng. 2021. TrajMesa: A Distributed NoSQL-Based
Trajectory Data Management System. TKDE (2021), 1–1. https://doi.org/10.1109/
TKDE.2021.3079880

[11] Ruiyuan Li, Huajun He, Rubin Wang, Sijie Ruan, Yuan Sui, Jie Bao, and Yu Zheng.
2020. Trajmesa: A distributed nosql storage engine for big trajectory data. In
ICDE. IEEE, 2002–2005.

[12] Ruiyuan Li, Sijie Ruan, Jie Bao, and Yu Zheng. 2017. A cloud-based trajectory
data management system. In SIGSPATIAL. 1–4.

[13] Sijie Ruan, Ruiyuan Li, Jie Bao, Tianfu He, and Yu Zheng. 2018. Cloudtp: A cloud-
based flexible trajectory preprocessing framework. In ICDE. IEEE, 1601–1604.

[14] Sijie Ruan, Zi Xiong, Cheng Long, Yiheng Chen, Jie Bao, Tianfu He, Ruiyuan Li,
ShengnanWu, Zhongyuan Jiang, and Yu Zheng. 2020. Doing in One Go: Delivery
Time Inference Based on Couriers’ Trajectories. In SIGKDD. 2813–2821.

[15] Zeyuan Shang, Guoliang Li, and Zhifeng Bao. 2018. Dita: Distributed in-memory
trajectory analytics. In ICDE. 725–740.

[16] Jing Yuan, Yu Zheng, Xing Xie, and Guangzhong Sun. 2011. Driving with knowl-
edge from the physical world. In SIGKDD. 316–324.

http://just-traj.urban-computing.com
http://just-traj.urban-computing.com
http://just-traj.urban-computing.com/
https://doi.org/10.1109/TKDE.2021.3079880
https://doi.org/10.1109/TKDE.2021.3079880

	Abstract
	1 INTRODUCTION
	2 Overview
	3 STORAGE
	3.1 Pre-processing.
	3.2 Indexing.
	3.3 Storing.

	4 QUERY
	5 ANALYTICS
	6 SQL ENGINE
	6.1 Architecture
	6.2 SQL

	7 DEMONSTRATION
	7.1 Web Portal
	7.2 Scenarios

	References

