
Distributed Spatio-Temporal 𝑘 Nearest Neighbors Join
Ruiyuan Li

1,2
, Rubin Wang

2
, Junwen Liu

2
, Zisheng Yu

4,2
, Huajun He

3,2
, Tianfu He

5,2
, Sijie Ruan

4,2
,

Jie Bao
2
, Chao Chen

1
, Fuqiang Gu

1
, Liang Hong

6
, Yu Zheng

2

1
Chongqing University, Chongqing, China

2
JD Intelligent Cities Research, Beijing, China

3
Southwest Jiaotong University, Chengdu, China

4
Xidian University, Xi’an, China

5
Harbin Institute of Technology, Harbin, China

6
Wuhan University, Wuhan, China

{liruiyuan,hong}@whu.edu.cn;{wangrubin3,liujunwen8,yuzisheng3,hehuajun3,baojie}@jd.com

{Tianfu.D.He,sijieruan,msyuzheng}@outlook.com;{cschaochen,gufq}@cqu.edu.cn

ABSTRACT
The rapid development of positioning technology produces an ex-

tremely large volume of spatio-temporal data with various geome-

try types such as point, line string, polygon, or a mixed combination

of them. As one of the most basic but time-consuming operations,

𝑘 nearest neighbors join (𝑘NN join) has attracted much attention.

However, most existing works for 𝑘NN join either ignore temporal

information or consider point data only.

This paper proposes a novel and useful problem, i.e., ST-𝑘NN join,

which considers both spatial closeness and temporal concurrency. To
support ST-𝑘NN join over a huge amount of spatio-temporal data

with any geometry types efficiently, we propose a novel distributed

solution based on Apache Spark. Specifically, our method adopts

a two-round join framework. In the first round join, we propose

a new spatio-temporal partitioning method that achieves spatio-

temporal locality and load balance at the same time.We also propose

a lightweight index structure, i.e., Time Range Count Index (TRC-

index), to enable efficient ST-𝑘NN join. In the second round join,

to reduce the data transmission among different machines, we

remove duplicates based on spatio-temporal reference points before

shuffling local results. Extensive experiments are conducted using

three real big datasets, showing that our method is much more

scalable and achieves 9X faster than baselines. A demonstration

system is deployed and the source code is released.

CCS CONCEPTS
• Computing methodologies→MapReduce algorithms; • In-
formation systems → Geographic information systems; Join
algorithms.

KEYWORDS
Distributed Computing, Spatio-Temporal 𝑘NN Join, 𝑘NN Join

ACM Reference Format:
Ruiyuan Li, Rubin Wang, et al.. 2021. Distributed Spatio-Temporal 𝑘 Nearest

Neighbors Join. In 29th International Conference on Advances in Geographic

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ACM SIGSPATIAL’21, November 02–05, 2021, Beijing, China
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8664-7/21/11. . . $15.00

https://doi.org/10.1145/3474717.3484209

t3

t2t2
t4

t1t1

u1 u2 u3

t7t2

t1
Traj. (line)

Stay point (polygon)

(b) Various Geometry Types(a) Epidemic Prevention

Check-in (point)

p1

p2

p3

Figure 1: Motivation of ST-𝑘NN Join.

Information Systems (SIGSPATIAL ’21), November 2–5, 2021, Beijing, China.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3474717.3484209

1 INTRODUCTION
With the rapid development of positioning technology, an extremely

large number of spatio-temporal data is generated. Among spatio-

temporal data analyses, 𝑘 nearest neighbors join (𝑘NN join) [29, 30,

34, 37, 42] is one of the most common operations, which is very

useful in many applications. As shown in Fig. 1(a), in the case of

epidemic prevention [20], given a set of check-ins of the infected

patient 𝑢1, 𝑘NN join (𝑘 = 1) finds the nearest user of each check-in

point. Most existing solutions consider the spatial closeness only, so
they find 𝑢2 for 𝑝1, 𝑢3 for 𝑝2, and 𝑢3 for 𝑝3, respectively. As a result,

both 𝑢2 and 𝑢3 are of potentially vulnerable population and should

be isolated. However, if we consider the temporal concurrency as

well, 𝑢3 is no longer the nearest to 𝑝2, because they are generated

at different times (i.e., 𝑡2 and 𝑡4, respectively). Similarly, 𝑢3 is not

the nearest to 𝑝3. At the end, only 𝑢2 is the potentially suspected

user, which brings in a more precise epidemic prevention.

This paper proposes a new problem called ST-𝑘NN join that

considers both spatial closeness and temporal concurrency. ST-𝑘NN

can be applied to many other applications such as ride-sharing [28],

companion detection [9] and travel recommendation [5]. However,

it is challenging to perform ST-𝑘NN join for three reasons: 1) big
data. Spatio-temporal data is generated constantly at a very high

frequency, leading to a prohibitively large volume of data; 2) high
dimensionality. In addition to spatial information, we should

also consider the temporal information, which is more intractable;

and 3) various geometry types. Spatio-temporal data comes with

various geometry types, e.g., points of check-ins, line strings of

trajectories, and polygons of stay points [21], as shown in Fig. 1(b).

Over the last decade, there emerged many distributed frame-

works, e.g., Apache Hadoop [11] and Apache Spark [41], which

cope with big data efficiently. Many works [29, 30, 34, 37, 42] based

on distributed frameworks for 𝑘NN join ignore the temporal infor-

mation, therefore they cannot be applied to ST-𝑘NN join directly.

Besides, most of them [29, 30, 37, 42] are designed based on triangle

https://doi.org/10.1145/3474717.3484209
https://doi.org/10.1145/3474717.3484209

ACM SIGSPATIAL’21, November 02–05, 2021, Beijing, China Ruiyuan Li, et al.

inequality that is only fit for the distance between two points, so

they do not support complex geometries such as line strings and

polygons, and cannot support sophisticated urban applications.

As a result, this paper proposes a novel distributed solution

based on Apache Spark, which supports ST-𝑘NN join with various

geometry types efficiently. Specifically, our solution follows a two-

round join framework. In the first round join, we first partition the

objects according to the spatio-temporal distribution, then find a

distance bound for each object, such that its 𝑘 nearest neighbors

considering both spatial closeness and temporal concurrency must

locate in a specific region. In the second round join, we first perform

a local ST-𝑘NN join to get local results, then merge them into a

global one. Overall, the contributions of this paper are four-fold:

(1) This paper proposes a novel and useful ST-𝑘NN join problem,

and presents a distributed solution based on Apache Spark that

supports ST-𝑘NN join with any geometry type efficiently.

(2) We propose a new spatio-temporal partitioning method that

achieves spatio-temporal locality and load balance at the same

time. We devise a lightweight but effective index structure called

Time Range Count Index (TRC-index), which returns the minimum

number of satisfied objects in a partition. To reduce the data trans-

mission among different machines, we remove duplicates based on

spatio-temporal reference points before shuffling local results.

(3) Extensive experiments are carried out using three real datasets,

which verifies the powerful efficiency and scalability of our method.

(4) An online demonstration system is deployed based on JUST [19,

24–26], and the source code of ST-𝑘NN join is released [2].

Outline. We give some preliminaries in Section 2. In Section 3,

we describe the overview of our proposed solution. The details of

ST-𝑘NN join are presented in Section 4. We present the evaluation

results in Section 5, followed by the related works in Section 6.

Finally, we conclude this paper with future works in Section 7.

2 PRELIMINARY
In this section, we give related definitions, and introduce some

knowledge about Apache Spark. We list the symbols and their

meanings in Appendix A for the purpose of reference.

2.1 Definition
Definition 1. (ST-object) An ST-object (spatio-temporal object)

𝑟 = (𝑔𝑒𝑜𝑚, 𝑡𝑟) contains a spatial attribute 𝑔𝑒𝑜𝑚 and a time range

𝑡𝑟 , where 𝑔𝑒𝑜𝑚 can be any geometry (e.g., a point, a line string, a

polygon, etc., or a mixed set of them), and 𝑡𝑟 = [𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥] is a
time range. The time span of 𝑟 is defined as |𝑡𝑟 | = 𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛 .

Note that 𝑡𝑚𝑖𝑛 = 𝑡𝑚𝑎𝑥 is a special case of our definition. In the

following, for the sake of simplicity, we call an ST-object object.

Definition 2. (MBR and EMBR) The MBR (Minimum Bounding

Rectangle) of an object 𝑟 is the smallest axis-aligned rectangle that

contains all points of 𝑟 .𝑔𝑒𝑜𝑚, which can be represented by two

points 𝑀𝐵𝑅(𝑟) = ⟨(𝑙𝑎𝑡𝑚𝑖𝑛, 𝑙𝑛𝑔𝑚𝑖𝑛), (𝑙𝑎𝑡𝑚𝑎𝑥 , 𝑙𝑛𝑔𝑚𝑎𝑥)⟩. Its EMBR

(Extended Minimum Bounding Rectangle) with regard to a dis-

tance threshold 𝛾 is defined as 𝐸𝑀𝐵𝑅(𝑟, 𝛾) = ⟨(𝑙𝑎𝑡𝑚𝑖𝑛 −𝛾, 𝑙𝑛𝑔𝑚𝑖𝑛 −
𝛾), (𝑙𝑎𝑡𝑚𝑎𝑥 + 𝛾, 𝑙𝑛𝑔𝑚𝑎𝑥 + 𝛾)⟩.

Definition 3. (Temporal Domain and Spatial Domain) Given
a set of objects 𝑅, its temporal domain𝑇𝐷 (𝑅) is the minimum time

range that contains all time ranges of 𝑟 ∈ 𝑅.

Similarly, the spatial domain of 𝑅 is the MBR that contains all

MBRs of 𝑟 ∈ 𝑅, denoted as 𝑆𝐷 (𝑅).

Definition 4. (Expanded Time Range) Given a time range 𝑡𝑟 =

[𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥] and a time threshold 𝛿 , the expanded time range of 𝑡𝑟

is defined as 𝐸𝑇𝑅(𝑡𝑟, 𝛿) = [𝑡𝑚𝑖𝑛 − 𝛿, 𝑡𝑚𝑎𝑥 + 𝛿].

Definition 5. (ST-𝑘NN) Given an object 𝑟 , a set of objects 𝑆 , an

integer 𝑘 , and a time threshold 𝛿 , the ST-𝑘NN (Spatio-Temporal 𝑘

Nearest Neighbors) of 𝑟 from 𝑆 is defined as 𝑆 ′ = ST-𝑘NN(𝑟, 𝑘, 𝛿, 𝑆),
where 𝑆 ′ contains at most 𝑘 objects, i.e., |𝑆 ′ | ≤ 𝑘 , and ∀𝑠𝑖 ∈ 𝑆 ′, it
satisfies the following two constraints at the same time:

(1) Temporal Concurrency. The temporal gap between 𝑟 and 𝑠𝑖 is

no more than 𝛿 , i.e.,

𝐸𝑇𝑅(𝑟 .𝑡𝑟, 𝛿) ∩ 𝑠𝑖 .𝑡𝑟 ≠ ∅ (1)

(2) Spatial Closeness. Suppose 𝑆 ′′ ⊆ 𝑆 is the set of objects that

meet the temporal concurrency constraint. Spatial closeness re-

quires that ∀𝑠𝑖 ∈ 𝑆 ′, ∀𝑠 𝑗 ∈ 𝑆 ′′ \ 𝑆 ′, 𝑑 (𝑟, 𝑠𝑖) < 𝑑 (𝑟, 𝑠 𝑗).

Here, |𝑆 ′ | < 𝑘 iff |𝑆 ′′ | < 𝑘 . In this case, |𝑆 ′ | = |𝑆 ′′ |. 𝑑 (𝑟, 𝑠)
measures the distance between 𝑟 and 𝑠 , which is defined as:

𝑑 (𝑟, 𝑠) = min

𝑝∈𝑟 .𝑔𝑒𝑜𝑚,𝑞∈𝑠.𝑔𝑒𝑜𝑚
𝑑 (𝑝, 𝑞) (2)

where 𝑑 (𝑝, 𝑞) is the Euclidean distance between two spatial points.

Discussion. The temporal gap 𝛿 is defined because in many real

applications such as ride-sharing [28], users would have tolerance

for some time deviation (e.g., 15 minutes). In fact, the temporal con-

currency with a gap is more general for various applications with

different values of 𝛿 . Besides, we do not combine spatio-temporal

dimensions into a single distance metric using a linear combiner

with different weights [13]. Because 1) the temporal dimension has

a very different scale from spatial dimension, so we should not put

them together simply; and 2) for different applications the weights

are different. It is intractable for end users to assign appropriate

weights to spatio-temporal dimensions.

Definition 6. (ST-𝑘NN Join) Given two sets of objects 𝑅 and 𝑆 ,

an integer number 𝑘 , and a time threshold 𝛿 , ST-𝑘NN join of 𝑅 and

𝑆 (denoted as 𝑅 n 𝑆) combines each object 𝑟 ∈ 𝑅 with its ST-𝑘NNs

from S. Formally,

𝑅 n 𝑆 = {(𝑟, 𝑠) |∀𝑟 ∈ 𝑅,∀𝑠 ∈ ST-𝑘NN(𝑟, 𝑘, 𝛿, 𝑆)} (3)

According to the definition of ST-𝑘NN join, those objects outside

of the time period𝐺𝑇 = 𝐸𝑇𝑅(𝑇𝐷 (𝑅), 𝛿) ∩𝑇𝐷 (𝑆), i.e., 𝑡𝑟 ∩𝐺𝑇 = ∅,
would not contribute to the final results. So before actually perform-

ing ST-𝑘NN join, we first filter out the objects in 𝑅 and 𝑆 outside of

𝐺𝑇 to avoid unnecessary computations. We call𝐺𝑇 global temporal
domain, and𝐺𝑆 = 𝑆𝐷 (𝑆) global spatial domain. In the following, 𝑅

and 𝑆 represent the filtered set, respectively.

2.2 Apache Spark
Apache Spark [41] is an in-memory distributed framework for

large-scale data processing with fault-tolerance. It provides an ab-

straction called resilient distributed dataset (RDD) consisting of sev-

eral partitions across a cluster of machines. Each RDD is built

using parallelized operations (e.g. map, filter, reduce). RDDs can

be cached in memory or made persistent on disk to accelerate data

reusing and support iteration. In Spark, we can broadcast variables

Distributed Spatio-Temporal 𝑘 Nearest Neighbors Join ACM SIGSPATIAL’21, November 02–05, 2021, Beijing, China

(a) Data Partition for S

A Temporal Partition

A Spatial
Partition

① Sample

② TP

③ SP

④ Reassign

S

S’
TRC-Index

…

3D R-Tree

(b) First Round Local Join

R ∀r locates in r

EMBR(r, γ)

(c) Second Round Local Join

tpi

i
jsp

i
jsp

r

ETR(r.tr, δ)

…

1
is

3D R-Tree

…

2
is i

ks…

1
js 2

js j
ks…

…

…s1 s2 sk

(d) Merge Result

(r, s1)
(r, s2)

(r, sk)

…
[0, 4) [4, 8) [8, 12) [12, 16]

b1 b2 b3 b4

[0, 4) [4, 8) [8, 12) [12, 16]

sum
minT


sum
maxT


r

3D R-Tree

Figure 2: Overview of ST-𝑘NN Join.

to all partitions in an RDD. Shuffle is an operation to reorganize

data across partitions. Note that shuffle is very expensive as it

moves data among partitions or even machines in a cluster, so we

should try to avoid it when possible.

Although this paper presents ST-𝑘NN join based on Apache

Spark, we can transplant it easily to other distributed frameworks,

such as Apache Hadoop [11] and Apache Flink [8].

3 OVERVIEW
Figure 2 presents the framework of our proposed solution for ST-

𝑘NN join, which consists of four main steps:

Data Partition for 𝑆 . In this step, as shown in Fig. 2(a), we divide

𝑆 into several spatio-temporal partitions (ST-partitions), where the

numbers of objects in different partitions are almost the same to

achieve a good load balance.

First Round Local Join. In this step, as described in Fig. 2(b), for

each ST-partition, we build two local indexes, i.e., time range count

index (TRC-index) and 3D R-tree index. Using these two indexes,

for each object 𝑟 ∈ 𝑅 that locates in this partition, we determine an

area, in which the ST-𝑘NNs of 𝑟 must reside.

SecondRound Local Join.As presented in Fig. 2(c), in this step, we
examine all ST-partitions that overlap with the area of 𝑟 calculated

in the previous step. In each satisfied partition, we perform a 𝑘NN

search, generating a set of local ST-𝑘NNs of 𝑟 .

Merge Result. As shown in Fig. 2(d), for each object 𝑟 , we merge

multiple local ST-𝑘NN results into a global one, and produce the

final result.

4 ST-𝑘NN JOIN
In this section, we elaborate on the details of each step, and analyze

the performance of our method finally.

4.1 Data Partition for 𝑆
In distributed environments for ST-𝑘NN join, it is vital to design a

good data partition strategy, which requires that: 1) Spatio-Temporal
Proximity. Objects that are close spatially and temporally should

be assigned to the same partition as much as possible, thus we are

likely to find all ST-𝑘NNs in one partition, reducing the network

communication overhead among different partitions. 2) Even Distri-
bution. The numbers of objects in different partitions are as equal

as possible, thus we can achieve load balance.

Existing distributed frameworks for spatial data processing ei-

ther focus on spatial partitioning merely [34, 37], or aim at spatial-

temporal join [35, 36], which cannot be used for ST-𝑘NN join di-

rectly. To that end, this paper devises a simple but effective spatio-

temporal data partition strategy for ST-𝑘NN join. We partition 𝑆

with four steps: 1) Sampling, 2) Temporal Partitioning, 3) Spatial
Partitioning, and 4) Reassignment, as shown in Fig. 2(a).

Sampling. In this step, we take a set of random samples 𝑆 ′ from
𝑆 with a sampling rate of 𝜂. Because 𝑆 ′ is sampled randomly from

𝑆 , it keeps the spatio-temporal data distribution of 𝑆 . Then 𝑆 ′ is
collected to the driver program on themaster node, where wewould

construct spatio-temporal partitions based on these samples. We

take the same sampling rate 𝜂 = 1% as Simba [37] did.

Temporal Partitioning. In this step, we divide the global temporal

domain𝐺𝑇 into at most 𝛼 disjoint time ranges (called temporal par-
titions) 𝑇𝑃 = {𝑡𝑝1, 𝑡𝑝2, ..., 𝑡𝑝𝑚},𝑚 ≤ 𝛼 , such that 𝐺𝑇 =

⋃
1≤𝑖≤𝑚

𝑡𝑝𝑖 ,

and ∀𝑖 ∈ [1,𝑚], ∀𝑗 ∈ [1,𝑚], 𝑖 ≠ 𝑗 , 𝑡𝑝𝑖 ∩ 𝑡𝑝 𝑗 = ∅. For any 𝑠 ∈ 𝑆 ′,
if its time range 𝑠 .𝑡𝑟 overlaps with a temporal partition 𝑡𝑝𝑖 , i.e.,

𝑠 .𝑡𝑟 ∩ 𝑡𝑝𝑖 ≠ ∅, 𝑠 will be assigned to 𝑡𝑝𝑖 . As a consequence, an object

will be copied many times if it intersects multiple temporal parti-

tions. Here 𝛼 is a system parameter, and we will show its effect on

the ST-𝑘NN join performance in Section 5.

The time span of a temporal partition has a significant impact on

ST-𝑘NN join. First of all, intuitively, to reduce the data replication

of 𝑆 , the time span of a temporal partition should not be too small

(at least it should not be smaller than the time span of 𝑠 ∈ 𝑆 ′).
Secondly, however, during the join process, as we will see later,

we will leverage temporal partitions to filter out irrelevant objects.

As a result, to ensure a good filtering ability, the time span of a

temporal partition should be small as much as possible. Thirdly,
to avoid the replication of 𝑟 ∈ 𝑅 during the following join process,

the time span of a temporal partition is expected to be bigger than

that of 𝐸𝑇𝑅(𝑟, 𝛿).
Based on the observations above, the time span of any temporal

partition 𝑡𝑝𝑖 , ∀𝑖 ∈ [1,𝑚], should hold:

|𝑡𝑝𝑖 | ≥ 𝑚𝑎𝑥{|𝑠 .𝑡𝑟 |, 2𝛿 + |𝑟 .𝑡𝑟 |} (4)

where |𝑠 .𝑡𝑟 | and |𝑟 .𝑡𝑟 | are the average time spans of 𝑠 ∈ 𝑆 and 𝑟 ∈ 𝑅,

respectively. We adopt 2𝛿 + |𝑟 .𝑡𝑟 | because the expanded time span

of 𝑟 ∈ 𝑅 is expected to be 2𝛿 + |𝑟 .𝑡𝑟 |.
Besides, to achieve load balance, the numbers of objects in differ-

ent temporal partitions should be as equal as possible, which can

be achieved by limiting the minimum number of samples in each

temporal partition:

𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (𝑡𝑝𝑖) ≥ |𝑆 ′ |/𝛼 (5)

where |𝑆 ′ | is the object number in 𝑆 ′. |𝑆 ′ |/𝛿 guarantees the number

of temporal partitions is no more than 𝛼 .

We propose a new temporal partitioning method based on Sweep

Line Algorithm [32]. As shown in Algorithm 1, we first sort the

objects in 𝑆 ′ by the start time in an ascending order (Line 1), then

ACM SIGSPATIAL’21, November 02–05, 2021, Beijing, China Ruiyuan Li, et al.

initialize the following variables: 𝑡𝑝𝑠 stores the final temporal parti-

tions, 𝑐𝑢𝑟 is a set of objects in the current temporal partition, 𝑠𝑡𝑎𝑟𝑡

records the start time of the current temporal partition, and 𝑠𝑙 is

the sweep line (Line 2). In Lines 5-9, we scan 𝑆 ′ from left to right. If

the current temporal partition satisfies both Equ. (4) and Equ. (5), it

forms a final temporal partition and is added to 𝑡𝑝𝑠 . Those objects in

𝑐𝑢𝑟 that do not contribute to the next temporal partition are filtered

out. Finally, we process the last temporal partition and return the

final results (Line 10).

Algorithm 1: TP(𝑆 ′, 𝐺𝑇 , 𝑘 , 𝛿 , 𝛼 , 𝛽 , 𝜂)

1 Sort 𝑆 ′ by the start time of objects in ascending order;

2 𝑡𝑝𝑠 = ∅; 𝑐𝑢𝑟 = ∅; 𝑠𝑡𝑎𝑟𝑡 = 𝐺𝑇 .𝑡𝑚𝑖𝑛 ; 𝑠𝑙 = 𝐺𝑇 .𝑡𝑚𝑖𝑛 ;

3 𝑚𝑖𝑛𝑆𝑝𝑎𝑛 =𝑚𝑎𝑥{|𝑠 .𝑡𝑟 |, 2𝛿 + |𝑟 .𝑡𝑟 |};
4 𝑚𝑖𝑛𝑁𝑢𝑚 = |𝑆 ′ |/𝛼 ;
5 for 𝑠 ∈ 𝑆 ′ do
6 𝑠𝑙 = 𝑠 .𝑡𝑟 .𝑡𝑚𝑖𝑛 ; 𝑐𝑢𝑟 = 𝑐𝑢𝑟 ∪ {𝑠}; 𝑠𝑝𝑎𝑛 = 𝑠𝑙 − 𝑠𝑡𝑎𝑟𝑡 ;

7 if 𝑠𝑝𝑎𝑛 ≥ 𝑚𝑖𝑛𝑆𝑝𝑎𝑛 and |𝑐𝑢𝑟 | ≥ 𝑚𝑖𝑛𝑁𝑢𝑚 then
8 𝑡𝑝𝑠 = 𝑡𝑝𝑠 ∪ {[𝑠𝑡𝑎𝑟𝑡, 𝑠𝑙]}; 𝑠𝑡𝑎𝑟𝑡 = 𝑠𝑙 ;

9 Filter out 𝑠 ′ ∈ 𝑐𝑢𝑟 that 𝑠 ′.𝑡𝑟 .𝑡𝑚𝑎𝑥 < 𝑠𝑡𝑎𝑟𝑡 ;

10 return 𝑡𝑝𝑠 ∪ {[𝑠𝑡𝑎𝑟𝑡,𝐺𝑇 .𝑡𝑚𝑎𝑥]};

Spatial Partitioning. In this step, for each temporal partition

𝑡𝑝𝑖 , we divide the global spatial domain 𝐺𝑆 into at most 𝛽 spatial

partitions 𝑆𝑃𝑖 = {𝑠𝑝𝑖
1
, 𝑠𝑝𝑖

2
, ..., 𝑠𝑝𝑖𝑛}, 𝑛 ≤ 𝛽 , using Quad-tree [15]

based on the samples 𝑆 ′
𝑖
assigned to 𝑡𝑝𝑖 . As these spatial partitions

belong to a temporal partition, we call them ST-partitions. Like
𝛼 , 𝛽 is a system parameter as well, and we will test its impact on

ST-𝑘NN join performance in Section 5.

This paper adopts Quad-tree [15] to perform spatial partitioning

for three reasons. Firstly, Quad-tree can mitigate the problem of

unbalanced spatial distribution comparing to Grid partition [4, 27],

as Quad-tree partitions the areas with denser objects into smaller

regions. Secondly, comparing to R-tree [17] and its variants [6, 38],

Quad-tree considers all parts of spatial domain, but R-tree and its

variants ignore those unsampled areas. One optional method is to

adjust the MBRs of nodes in R-tree when assigning the entire set 𝑆 ,

but this is time-consuming and may produce a poor-performance R-

tree, especially for non-point objects (e.g., line strings and polygons).

Thirdly, for KD-tree [7], it is hard to determine a split line for non-

point data, but Quad-tree splits the space more easily.

Quad-tree recursively splits the global spatial domain 𝐺𝑆 into

four equal-sized sub-regions. If the MBR of an object 𝑠 ∈ 𝑆 ′
𝑖
in-

tersects multiple sub-regions, it will be copied to all intersected

sub-regions. Each sub-region is further split if it has more than

𝜁 objects. All leaf sub-regions form a set 𝑆𝑃𝑖 of spatial partitions.

Note that we check the MBR of an object instead of the object itself

here, because it is much faster to check the spatial relation of two

MBRs than that of two complex objects themselves.

However, it is not easy to decide a good 𝜁 . It gets more compli-

cated if we limit the maximum number 𝛽 of spatial partitions. In

our ST-𝑘NN join problem, each 𝑟 ∈ 𝑅 needs to find its ST-𝑘NNs. It

is efficient if we can find all its ST-𝑘NNs in one partition. Besides,

the numbers of objects in different spatial partitions should be as

the same as possible for load balance. As a result, 𝜁 is defined as:

𝜁 =𝑚𝑎𝑥{|𝑆 ′𝑖 |/𝛽, 4𝜂 × 𝑘 × |𝑡𝑝𝑖 | ÷ (2𝛿 + |𝑟 .𝑡𝑟 |)} (6)

where |𝑆 ′
𝑖
|/𝛽 is the average samples number in a spatial partition.

4𝜂 × 𝑘 × |𝑡𝑝𝑖 | ÷ (2𝛿 + |𝑟 .𝑡𝑟 |) ensures that after a split, at least one
of its sub-regions is expected to have more than 𝑘 satisfied objects.

As shown in Algorithm 2, we resort to a priority queue 𝑝𝑞 to split

the Quad-tree nodes. Initially, the global spatial domain𝐺𝑆 (i.e., the

root of Quad-tree) is inserted into 𝑝𝑞. Then we check all nodes in

𝑝𝑞 in a descending order of sample numbers. If the current node

has less than 𝜁 samples, the split process is terminated. Otherwise,

we split the node into four sub-nodes, and add them into 𝑝𝑞. This

process is repeated until the number of spatial partitions is not less

than 𝛽 . Each node in 𝑝𝑞 represents a spatial partition.

Algorithm 2: SP(𝑆 ′
𝑖
, 𝐺𝑆 , 𝑘 , 𝛽 , 𝜂)

1 Initialize a priority queue 𝑝𝑞, with keys as the sample

numbers in Quad-tree nodes, sorted in a descending order;

2 𝜁 =𝑚𝑎𝑥{|𝑆 ′
𝑖
|/𝛽, 4𝜂 × 𝑘 × |𝑡𝑝𝑖 | ÷ (2𝛿 + |𝑟 .𝑡𝑟 |)}; 𝑝𝑞.𝑝𝑢𝑠ℎ(𝐺𝑆);

3 while 𝑝𝑞.𝑙𝑒𝑛𝑔𝑡ℎ < 𝛽 do
4 𝑛𝑜𝑑𝑒 = 𝑝𝑞.𝑝𝑜𝑝 ();
5 if 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (𝑛𝑜𝑑𝑒) < 𝜁 then
6 𝑝𝑞.𝑝𝑢𝑠ℎ(𝑛𝑜𝑑𝑒); break;
7 Split 𝑛𝑜𝑑𝑒 into four sub-nodes, and add them into 𝑝𝑞;

8 return the nodes in 𝑝𝑞 as spatial partitions;

Reassignment. After previous two steps, we get at most 𝛼 × 𝛽

ST-partitions. Each ST-partition is bounded to a time range and an

MBR, with which we build a global index𝐺𝐼 , where the time ranges

are organized as a sorted array, and the MBRs are organized as a

Quad-tree. The global index𝐺𝐼 is broadcast to all partitions of 𝑆 . For

each 𝑠 ∈ 𝑆 , if its time range and geometry both intersect with that of
an ST-partition, the identifier of the ST-partition will be bounded to

𝑠 . After that, 𝑆 is re-partitioned according to the bounded identifiers.

The objects with the same identifier will be assigned to the same

partition. Note that an object 𝑠 may be assigned to multiple new

partitions, as it may intersect several ST-partitions.

4.2 First Round Local Join
In this step, for each 𝑟 ∈ 𝑅, we aim to find an area 𝐸𝑀𝐵𝑅(𝑟, 𝛾), such
that its ST-𝑘NNs in 𝑆 must intersect with 𝐸𝑀𝐵𝑅(𝑟, 𝛾). Existing two-
round methods such as LocationSpark [33, 34] mainly focus on

point data. Besides, they do not consider the temporal information.

It is much more challenging for ST-𝑘NN join because of two

reasons. First, for a non-point object 𝑟 ∈ 𝑅 with a time range, it

may intersect with more than one ST-partitions at the same time.

Second, it is hard to figure out whether a partition contains at least

𝑘 objects that meet the temporal concurrency requirement.

For the first challenge, we check all intersected ST-partitions to

find the nearest one. For the second challenge, we propose a new

index structure called TRC-index (Time Range Count Index) in each

ST-partition to get the minimum number of intersected time ranges

of 𝐸𝑇𝑅(𝑟, 𝛿) efficiently. Overall, the first round local join contains

three steps: 1) TRC-index Construction, 2) Data Partition for 𝑅, and
3) Distance Bound Calculation.
TRC-index Construction. There are two requirements for TRC-

index. 1) Given a set of objects 𝑆𝑖 in an ST-partition and a time

range 𝑡𝑟 , it returns efficiently the minimum number of objects in

𝑆𝑖 whose time ranges intersect with 𝑡𝑟 . 2) TRC-index should be as

small as possible, because it will be broadcast to all partitions of 𝑅.

Distributed Spatio-Temporal 𝑘 Nearest Neighbors Join ACM SIGSPATIAL’21, November 02–05, 2021, Beijing, China

0 1684 12

Temporal Domain

5

tr1

14

1 8

tr2

3 6

tr3

(a) Time Range Database

13 14

tr5
13 15

tr4

Tmin

Tmax

[0, 4)

b1 b2 b3 b3

[4, 8) [8, 12) [12, 16]

b1 b2 b3 b4

[0, 4) [4, 8) [8, 12) [12, 16]

2 1 0 2

0 1 1 3

(c) TRC-Index

[0, 4) [4, 8) [8, 12) [12, 16]

b1 b2 b3 b4

[0, 4) [4, 8) [8, 12) [12, 16]

5 3 2 2

0 1 2 5

sum
minT

sum
maxT

(b) Count for Each Bin

count

count

sum

sum

ETR(r.tr, δ) = [2, 4]

(d) TRC Search Example

TRCSearch(4,)sum
minT=

3

TRCSearch(2,)=

0

sum
maxT

5 – 0 – 3 = 2

Figure 3: Illustration of TRC-Index.

To this end, we design a lightweight but effective TRC-index. The

intuition of TRC-index is straightforward: if we know the upper

bound number 𝑁 of time ranges that would not intersect with the

given time range 𝑡𝑟 , then we can obtain easily the lower bound

number, i.e., |𝑆𝑖 | − 𝑁 , of intersected time ranges. For any object 𝑠 ∈
𝑆𝑖 , its time range does not intersect with 𝑡𝑟 iff 𝑠 .𝑡𝑟 .𝑡𝑚𝑎𝑥 < 𝑡𝑟 .𝑡𝑚𝑖𝑛

or 𝑠 .𝑡𝑟 .𝑡𝑚𝑖𝑛 > 𝑡𝑟 .𝑡𝑚𝑎𝑥 . Therefore, to accelerate the computation of

𝑁 , TRC-index stores the number of objects whose maximum time

is less than 𝑡𝑟 .𝑡𝑚𝑖𝑛 or minimum time is greater than 𝑡𝑟 .𝑡𝑚𝑎𝑥 .

Algorithm 3: TRCIndex(𝑆𝑖 , 𝑏𝑖𝑛𝑁𝑢𝑚)

1 Initialize two arrays 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥 with length of 𝑏𝑖𝑛𝑁𝑢𝑚;

2 𝑏𝑖𝑛𝐿𝑒𝑛 = ⌈|𝑇𝐷 (𝑆𝑖) |/𝑏𝑖𝑛𝑁𝑢𝑚⌉;
3 for 𝑠 ∈ 𝑆𝑖 do
4 𝑗1 = ⌊(𝑠 .𝑡𝑟 .𝑡𝑚𝑖𝑛 −𝑇𝐷 (𝑆𝑖) .𝑡𝑚𝑖𝑛)/𝑏𝑖𝑛𝐿𝑒𝑛⌋; 𝑇𝑚𝑖𝑛 [𝑗1] + +;
5 𝑗2 = ⌊(𝑠 .𝑡𝑟 .𝑡𝑚𝑎𝑥 −𝑇𝐷 (𝑆𝑖) .𝑡𝑚𝑖𝑛)/𝑏𝑖𝑛𝐿𝑒𝑛⌋; 𝑇𝑚𝑎𝑥 [𝑗2] + +;
6 for 𝑗 = 1; 𝑗 < 𝑏𝑖𝑛𝑁𝑢𝑚; 𝑗 + + do
7 𝑇𝑚𝑖𝑛 [𝑏𝑖𝑛𝑁𝑢𝑚 − 𝑗 − 1] += 𝑇𝑚𝑖𝑛 [𝑏𝑖𝑛𝑁𝑢𝑚 − 𝑗];
8 𝑇𝑚𝑎𝑥 [𝑗] += 𝑇𝑚𝑎𝑥 [𝑗 − 1];
9 return ⟨𝑇𝐷 (𝑆𝑖), |𝑆𝑖 |, 𝑏𝑖𝑛𝑁𝑢𝑚,𝑇𝑚𝑖𝑛,𝑇𝑚𝑎𝑥 ⟩ as TRC-index;

As the time dimension is continuous, we use discrete disjoint bins

with equal length to represent the time information approximately.

Algorithm 3 presents the pseudo-code of TRC-index construction.

We use two arrays 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥 to record the number of time

ranges whose start time and end time locate in each bin, respectively

(Line 1). The objects 𝑆𝑖 in the ST-partition are scanned linearly. For

each object 𝑠 ∈ 𝑆𝑖 , we first calculate its start and end time bin

numbers, respectively, then increase their counts by 1 (Lines 3-5).

After that, we accumulate the counts by scanning 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥

for once (Lines 6-8). Note that we accumulate the counts of 𝑇𝑚𝑖𝑛

from right to left, but𝑇𝑚𝑎𝑥 from left to right. By doing this, we can

get quickly the number of objects whose start time is greater than

𝑡𝑟 .𝑡𝑚𝑎𝑥 using 𝑇𝑚𝑖𝑛 , and the number of objects whose end time is

less than 𝑡𝑟 .𝑡𝑚𝑖𝑛 using 𝑇𝑚𝑎𝑥 . Finally, the TRC-index is returned as

a quintuple ⟨𝑇𝐷 (𝑆𝑖), |𝑆𝑖 |, 𝑏𝑖𝑛𝑁𝑢𝑚,𝑇𝑚𝑖𝑛,𝑇𝑚𝑎𝑥 ⟩ (Line 9).
With the help of TRC-index, we can calculate quickly the lower

bound number of objects whose time ranges intersect with 𝑡𝑟 =

[𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥]. We first compute the bin numbers, i.e., 𝑏𝑚𝑖𝑛 and 𝑏𝑚𝑎𝑥 ,

of 𝑡𝑟 .𝑡𝑚𝑖𝑛 and 𝑡𝑟 .𝑡𝑚𝑎𝑥 , respectively, using the similar method in

Lines 3-5 of Algorithm 3. The number of objects whose end time

is smaller than 𝑡𝑟 .𝑡𝑚𝑖𝑛 is at most 𝑇𝑚𝑎𝑥 [𝑏𝑚𝑖𝑛] (note that in the

bin 𝑏𝑚𝑖𝑛 , there exist some objects whose end time is not smaller

than 𝑡𝑟 .𝑡𝑚𝑖𝑛). Similarly, the number of objects whose start time

is greater than 𝑡𝑟 .𝑡𝑚𝑎𝑥 is at most 𝑇𝑚𝑖𝑛 [𝑏𝑚𝑎𝑥]. As a result, the

number of objects whose time ranges intersect with 𝑡𝑟 is at least
|𝑆𝑖 | −𝑇𝑚𝑎𝑥 [𝑏𝑚𝑖𝑛] −𝑇𝑚𝑖𝑛 [𝑏𝑚𝑎𝑥].

The total bin number 𝑏𝑖𝑛𝑁𝑢𝑚 provides a trade-off between net-

work overhead and result precision. A bigger 𝑏𝑖𝑛𝑁𝑢𝑚 means a

higher lower bound, but requires more network data transmission.

We will investigate its effect on ST-𝑘NN join in Section 5.

For example, given a time range database shown in Fig. 3(a),

we first count the number of objects in each bin in Fig. 3(b) (here

𝑏𝑖𝑛𝑁𝑢𝑚 is set as 4), then accumulate the counts in Fig. 3(c). With

TRC-index, we find that there are at least 2 time ranges intersecting

with “[2, 4]” (i.e., “[1, 8]” and “[3, 6]”), as shown in Fig. 3(d).

Data Partition for 𝑅. In the previous step, we build a TRC-index

in each ST-partition. Recall that in Section 4.1, we built a global

index 𝐺𝐼 . In this step, we broadcast 𝐺𝐼 and all TRC-indexes to the

partitions of 𝑅. Because𝐺𝐼 and TRC-indexes are small enough, the

broadcast overhead can be ignored. For each 𝑟 ∈ 𝑅, we find a set

of temporal partitions 𝑇𝑃 ′ = {𝑡𝑝 ′
1
, 𝑡𝑝 ′

2
, ..., 𝑡𝑝 ′𝑢 } that intersects with

𝐸𝑇𝑅(𝑟 .𝑡𝑟, 𝛿) using𝐺𝐼 . In each 𝑡𝑝 ′
𝑖
∈ 𝑇𝑃 ′, we find 𝑟 ’s nearest spatial

partition 𝑠𝑝 ′𝑖 that has at least 𝑘 satisfied objects (i.e., whose time

ranges intersect with 𝐸𝑇𝑃 (𝑟 .𝑡𝑟, 𝛿)) in 𝑆 using 𝐺𝐼 and TRC-index.

At the end, we get 𝑢 spatial partitions {𝑠𝑝 ′1, 𝑠𝑝 ′2, ..., 𝑠𝑝 ′𝑢 }, among

which we select the nearest one and assign its identifier to 𝑟 . Finally,

𝑅 is re-partitioned according to the bounded identifiers, where the

objects 𝑟 ∈ 𝑅 with the same identifier are shuffled to the same

ST-partition. Note that for each 𝑟 ∈ 𝑅, it is assigned to at most ONE

ST-partition in this step. If 𝑢 = 0, i.e., 𝑟 cannot find any satisfied

ST-partition with TRC-index, we do not re-partition it and let it

skip the first round local join directly.

It is efficient to find 𝑟 ’s nearest spatial partition that has at least

𝑘 satisfied objects in 𝑆 with the help of 𝐺𝐼 and TRC-index. Note

that the spatial partitions 𝑆𝑃 ′
𝑖
= {𝑠𝑝 ′𝑖

1
, 𝑠𝑝 ′𝑖

2
, ..., 𝑠𝑝 ′𝑖𝑛 } in a temporal

partition 𝑡𝑝 ′
𝑖
∈ 𝑇𝑃 ′ are organized as a Quad-tree in𝐺𝐼 , thus we can

easily check each spatial partition in 𝑆𝑃 ′
𝑖
from near to far iteratively.

For each 𝑠𝑝 ′𝑖
𝑗
, we get the minimum number of objects whose time

ranges intersect with 𝐸𝑇𝑅(𝑟 .𝑡𝑟, 𝛿) using TRC-index. If the number is

not less than 𝑘 , the check process is terminated, and 𝑠𝑝 ′𝑖
𝑗
is returned.

Distance Bound Calculation. Assigning 𝑟 to an ST-partition

which has at least 𝑘 satisfied objects in 𝑆 guarantees that, we can

calculate a distance bound 𝛾 in this ST-partition, such that the dis-

tance between 𝑟 and any ST-𝑘NN is less than 𝛾 . Suppose 𝑅𝑖 and

𝑆𝑖 are the objects assigned to the ST-partition 𝑠𝑝𝑖 in 𝑅 and 𝑆 , re-

spectively. In each ST-partition 𝑠𝑝𝑖 , we first build a local 3D R-tree

index [43] over 𝑆𝑖 , where the temporal information is regarded as

the 3rd dimension. For each 𝑟 ∈ 𝑅𝑖 , we perform a local ST-𝑘NN

search in this partition using the built local 3D R-tree index, gen-

erating a local result {𝑠𝑖
1
, 𝑠𝑖
2
, ..., 𝑠𝑖

𝑘
} ordered by their distances to 𝑟 .

Thus, 𝛾 = 𝑑 (𝑟, 𝑠𝑖
𝑘
). For those objects that cannot find a satisfied

ST-partition in the previous step, we set 𝛾 = ∞. Note that the local

ACM SIGSPATIAL’21, November 02–05, 2021, Beijing, China Ruiyuan Li, et al.

join results and 3D R-tree index of 𝑆𝑖 are cached to avoid redundant

computations in the second round local join.

4.3 Second Round Local Join
In this step, for each 𝑟 ∈ 𝑅, we check all possible ST-partitions that

may produce its ST-𝑘NNs, and generate local results.

Recall that after performing the first round local join, we get

a distance bound 𝛾 for each 𝑟 ∈ 𝑅. All ST-partitions that both

temporally intersect with 𝐸𝑇𝑅(𝑟 .𝑡𝑟, 𝛿) and spatially intersect with

𝐸𝑀𝐵𝑅(𝑟, 𝛾) are candidates. These candidates can be figured out

efficiently using the global index𝐺𝐼 . For each candidate ST-partition

of 𝑟 (except for the one we assigned to 𝑟 in the first round local join,

which must be a candidate ST-partition of 𝑟 but we can omit it here

to avoid repeated computations), we bound its identifier to 𝑟 . After

that, we re-partition 𝑅 according to the bounded identifiers, where

the objects in 𝑅 with the same identifier are shuffled to the same

ST-partition. Note that an object 𝑟 ∈ 𝑅 will be copied several times

because there may be multiple candidate ST-partitions of 𝑟 . Finally,

in each new ST-partition 𝑠𝑝𝑖 , we perform an ST-𝑘NN search for

every 𝑟 ∈ 𝑅𝑖 by leveraging the local 3D R-tree index over 𝑆𝑖 built

in the first round local join. Different from the first round local

join, the search process can be optimized further using the distance

bound 𝛾 , i.e., if the distance between 𝑟 and a 3D R-tree node is

greater than 𝛾 , the ST-𝑘NN search can be terminated immediately.

This step shuffles small parts of 𝑅, because we observe that

the 𝐸𝑀𝐵𝑅(𝑟, 𝛾) of most objects 𝑟 ∈ 𝑅 intersect with only one ST-

partition. These objects can find their ST-𝑘NNs in the first round

join, thus do not participate in the second round join.

4.4 Merge Result
After two-round local joins, we obtain an individual local 𝑘NN

result of 𝑟 in its every ST-partition (note that we also consider

the local results produced in the first round local join here). A

straightforward method performs four steps. 1) shuffle local results,

where the results of the same 𝑟 are re-partitioned to the same new

partition; 2) combine them into a global result of 𝑟 using multiway

merge algorithm [10]; 3) remove duplicates, because an object could

be assigned to multiple ST-partitions, so there may be duplicated

combinations of (𝑟, 𝑠) in different local results; 4) take the first 𝑘

combinations as the final result of 𝑟 .

To reduce the network transmission overhead, this paper re-

moves duplicates before re-partitioning. For example, as shown in

Fig. 4, suppose the combination (𝑟, 𝑠) emerges in the local results

of ST-partition 0, 1 and 2. The start time of 𝐸𝑇𝑅(𝑟 .𝑡𝑟, 𝛿) ∩ 𝑠 .𝑡𝑟 is

called temporal reference point (TRP), and the lower-left corner of

𝐸𝑀𝐵𝑅(𝑟, 𝛾)∩𝑀𝐵𝑅(𝑟) is called spatial reference point (SRP). We only

retain (𝑟, 𝑠) in the ST-partition 0 that contains the TRP and SRP,

and discard them from the local results in other two ST-partitions.

Lemma 1. The duplicate removal method proposed above is correct.

Proof. We prove it from two aspects: integrity and uniqueness.
Integrity: If 𝑠 is among the ST-𝑘NNs of 𝑟 , (𝑟, 𝑠) will be generated

in the ST-partition in which TRP and SRP locate. According to the

definitions of TRP and SRP, we have TRP ∈ 𝑠 .𝑡𝑟 , TRP ∈ 𝐸𝑇𝑅(𝑟 .𝑡𝑟, 𝛿),
SRP ∈ 𝑀𝐵𝑅(𝑠), and SRP ∈ 𝐸𝑀𝐵𝑅(𝑟,𝛾). 𝑠 will be re-partitioned to

all ST-partitions that temporally intersect with 𝑠 .𝑡𝑟 and spatially in-

tersect with𝑀𝐵𝑅(𝑠), and 𝑟 will be re-partitioned to all ST-partitions

0

EMBR(r, γ)

MBR(r)

2
MBR(r) MBR(s)

ETR(r.tr, δ)
s.tr

1
MBR(s)

EMBR(r, γ)

Figure 4: Remove Duplicates.
that temporally intersect with 𝐸𝑇𝑅(𝑟 .𝑡𝑟, 𝛿) and spatially intersect

with 𝐸𝑀𝐵𝑅(𝑟,𝛾). As a result, 𝑟 and 𝑠 will emerge simultaneously

in the ST-partition 𝑠𝑝𝑖
𝑗
that the TRP and SRP locate in, thus (𝑟, 𝑠)

must be produced in 𝑠𝑝𝑖
𝑗
if 𝑠 is among the ST-𝑘NNs of 𝑟 .

Uniqueness: only one ST-partition contains TRP and SRP si-

multaneously. According to the partitioning strategy, we have

𝑡𝑝𝑖 ∩ 𝑡𝑝 𝑗 = ∅ if 𝑖 ≠ 𝑗 , and 𝑠𝑝𝑖𝑚 ∩ 𝑠𝑝𝑖𝑛 = ∅ if 𝑚 ≠ 𝑛. Suppose

there exist two different ST-partitions 𝑠𝑝𝑖𝑚 and 𝑠𝑝
𝑗
𝑛 contain TRP

and SRP simultaneously, i.e. TRP ∈ 𝑡𝑝𝑖 ∩ 𝑡𝑝 𝑗 and SRP ∈ 𝑠𝑝𝑖𝑚 ∩ 𝑠𝑝
𝑗
𝑛 .

If 𝑖 ≠ 𝑗 , TRP ∈ 𝑡𝑝𝑖 ∩ 𝑡𝑝 𝑗 , which contradicts with the temporal

partitioning strategy. If 𝑖 = 𝑗 and𝑚 ≠ 𝑛, SRP ∈ 𝑠𝑝𝑖𝑚 ∩ 𝑠𝑝𝑖𝑛 , which is

contradictory to the spatial partitioning strategy. �

4.5 Performance Analysis
One of the most expensive overhead in a distributed environment is

the data transmission among different machines, which is triggered

when we broadcast data and shuffle RDD. Recall that during ST-

𝑘NN join, we broadcast the global index 𝐺𝐼 and TRC-indexes for

once, but we can ignore the broadcast overhead because both 𝐺𝐼

and TRC-indexes are relatively very small. Figure 5 shows the data

shuffle in different steps, where 𝑆 is shuffled for only once, 𝑅 is

shuffled for twice, and the local join results are shuffled for once.

Because most 𝑟 ∈ 𝑅 can find its ST-𝑘NNs in the first round local

join (see Section 5), only few objects in 𝑅 take part in the second

round shuffle. We also remove duplicates before shuffling local join

results, which reduces data transmission overhead further.

S

R

① Data
Partition for S

R & S

② First Round
Local Join

R & S

③ Second
Round Join

Result

④ Merge
Result

Figure 5: Shuffles of RDD.
As for computation complexity, we build a global index 𝐺𝐼 (con-

sisting of a sorted array for temporal partitions and multiple Quad-

trees for spatial partitions) based on the sample data 𝑆 ′, which takes
O(|𝑆 ′ | × 𝑙𝑜𝑔|𝑆 ′ | +𝛽 × |𝑆 ′ | +𝛼 ×𝛽 × 𝑙𝑜𝑔𝛽). We build two local indexes

(i.e., TRC-index and Quad-tree over 𝑆𝑖) in each ST-partition, which

takes O(|𝑆𝑖 | + |𝑆𝑖 | × 𝑙𝑜𝑔 |𝑆𝑖 |). Using global and local indexes, it takes
O((|𝑆 | + 2× |𝑅 |) × 𝑙𝑜𝑔𝛼 × 𝑙𝑜𝑔𝛽) to find the ST-partitions of 𝑅 and 𝑆 .

In each ST-partition, we take O((|𝑅𝑖 | + |𝑆𝑖 |) × 𝑙𝑜𝑔 |𝑆𝑖 |) to perform 2

rounds local join. Finally, it takes O(|𝑅 | ×𝑘 × 𝑙𝑜𝑔𝑣) to merge results,

where 𝑣 is the average number of ST-partitions an 𝑟 locates in. We

give more details of complexity analysis in Appendix B.

Distributed Spatio-Temporal 𝑘 Nearest Neighbors Join ACM SIGSPATIAL’21, November 02–05, 2021, Beijing, China

5 EVALUATION
5.1 Datasets and Settings
Datasets. We use three real big datasets to verify the performance

of ST-𝑘NN join method: 1) NYTrip [12]. We extract six months

of taxi trips in New York City. Each trip has the location and time

information of pick-up and drop-off, respectively. The locations

of a pick-up or a drop-off can be modeled as point data (abbr. pt);
2) DidiTraj [1], which contains two months of taxi trajectories in

Xi’an, China. A trajectory can be modeled as a line string (abbr. ls);
and 3) DidiSP, which is a set of stay points extracted from DidiTraj

using the method proposed in [23]. A stay point is deemed as a

polygon (abbr. py). Table 1 shows the statistics.
Settings. Table 2 shows the geometry combinations for parameter

tuning, which aims at finding out the effects of the introduced pa-

rameters. Table 3 summarizes the experimental parameters, where

the default values are in bold. All experiments are conducted on

a cluster of 5 nodes, with each node equipped with CentOS 7.4,

24-core CPU and 128GB RAM. We deploy Hadoop 2.7.6 and Spark

2.3.3 in our cluster. During the experiment, we assign 5 cores and

5GB RAM to the driver program, and set up 30 executors in the

Spark cluster. Each executor is assigned 5 cores and 16GB RAM.

Metrics. We focus on three metrics: 1) Execution Time (ET),
which is the time cost for an ST-𝑘NN join; 2) Copy Amplification
(CA), which is defined as the ratio of total copy times of objects in

𝑅 (or 𝑆) to |𝑅 | (or |𝑆 |). For example, if an object 𝑟 intersects with 𝑛

ST-partitions, it will be copied 𝑛 times, thus its copy amplification

is 𝑛; and 3) Hit Rate (HR), which is defined as |𝑅′ |/|𝑅 |. 𝑅′ ⊆ 𝑅 is

a set of objects that can find their final ST-𝑘NNs in the first round

local join, so they do not participate in the second round join.

Baselines. As this paper is the first to address the ST-𝑘NN join

problem, we rewrite the source code of two related frameworks,

i.e., Simba[37] and LocationSpark [33, 34], to make them support

ST-𝑘NN join. We do not compare the works [35, 36] because their

source codes are not released. We also compare two variants of our

proposed method (our method is termed as ST-𝑘NNJ).
• Simba [37]. Simba provides efficient 𝑘NN join. We first find

the 2×𝑘 nearest neighbors for each 𝑟 ∈ 𝑅, then filter out the objects

𝑠 ∈ 𝑆 that do not meet the temporal concurrency requirement. It

may not produce enough 𝑘 results, because of the temporal filtering.

• LocationSpark (LS) [33, 34]. We rewrite its source code to

make it support ST-𝑘NN join, as we did for Simba. Note that both

Simba and LocationSpark do not support complex data in the code.

• ST-𝑘NNJ𝑅 , which adopts R-tree for spatial partitioning. This

method makes spatial partitions based on the centroid points of

𝑠 ∈ 𝑆 ′. Each 𝑠 ∈ 𝑆 is assigned to the nearest spatial partition. Each

spatial partition is an MBR containing all 𝑠 ∈ 𝑆 assigned to it. Each

𝑟 ∈ 𝑅 is assigned to all spatial partitions that intersect with it.

• ST-𝑘NNJ𝑛𝑟 , which adopts Quad-tree for spatial partitioning

just as ST-𝑘NNJ, but does not remove duplicates based on reference

points before shuffling local join results.

5.2 Parameters Tuning
Different Values of 𝛼 . Figure 6 presents the performance of ST-

𝑘NNJ with different values of 𝛼 . As shown in Fig. 6(a), with an

increasing 𝛼 , the execution time of all dataset combinations first

decreases, then increases. There are two reasons for an increasing

execution time with a smaller 𝛼 when 𝛼 < 100. Firstly, for a smaller

Table 1: Statistics of Datasets
Attributes NYTrip DidiTraj DidiSP
Raw Size 11.6GB 8.3GB 1.9GB

Records 87,110,491 39,224,513 9,108,396

Coords 174,220,982 348,191,629 73,708,681

Temporal 2013/01/01 - 2018/10/01 - 2018/10/01 -

Domain 2013/06/30 2018/11/30 2018/11/30

Spatial (-74.07 : -73.75), (108.92 : 109.01), (108.92 : 109.01),

Domain (40.61 : 40.87) (34.20 : 34.28) (34.20 : 34.28)

Table 2: Datasets for Parameters Tuning
Datasets Geometry R S
NYTrip pt n pt 10% pick-up points 10% drop-off points

DidiTraj ls n ls 10% samples 10% samples

DidiSP py n py 50% samples 50% samples

Mixture py n ls 50% DidiSP 10% DidiTraj

Table 3: Parameters
Parameters Settings

Max # Temporal Partitions 𝛼 50, 100, 200, 500, 1000
Max # Spatial Partitions 𝛽 5, 10, 20, 50, 100
𝑏𝑖𝑛𝑁𝑢𝑚 in a TRC-index 10, 50, 200, 500, 1000

Query Parameter 𝛿 (minutes) 10, 20, 30, 40, 50
Query Parameter 𝑘 1, 5, 10, 15, 20

Data Size (default values see Table 2) 10%, 20%, 30%, 40%, 50%

𝛼 , the number of objects from 𝑆 in an ST-partition tends to be larger,

thus the 3D R-tree in the ST-partition gets bigger, and it needs more

time to perform a local ST-𝑘NN search with the 3D R-tree. Secondly,

a smaller 𝛼 leads to bigger temporal partitions, which weakens the

temporal filtering ability.

However, when 𝛼 > 100, the execution time gets more with a

bigger 𝛼 . The reasons could be 1) the copy rates of 𝑅 and 𝑆 gets

larger with an increasing 𝛼 , as shown in Fig. 6(b) and Fig. 6(c); 2) a

bigger 𝛼 results in a lower hit rate, as shown in Fig. 6(d). That is,

more objects 𝑟 ∈ 𝑅 cannot find their ST-𝑘NNs in the first local join,

thus they need to participate in the second join.

It is also interesting to see that in Fig. 6(a), the execution time of

ls-ls and py-ls is more than that of pt-pt, even though the object
number of pt-pt is much more than that of ls-ls and py-ls (8.7m
n 8.7m vs 3.9m n 3.9m vs 4.6m n 3.9m). This is because 1) it is more

time-consuming to calculate the distance between two complex

objects; 2) the copy amplification of 𝑆 for ls-ls and py-ls is much

more than that of pt-pt, as shown in Fig. 6(c). Another interesting

observation is that the copy amplification of 𝑅 for pt-pt gets larger
comparing 𝛼 = 50 to 𝛼 = 100 in Fig. 6(b), resulting in a fierce

increasing of execution time in Fig. 6(a) and a slight drop off of hit

rate in Fig. 6(d). It is because the global temporal domain of NYTrip

is six months, which is much longer than that of other datasets.

Given a specified 𝑏𝑖𝑛𝑁𝑢𝑚 = 200, a longer temporal domain gives

a coarser lower bound for TRC-index, which causes more 𝑟 ∈ 𝑅

cannot find their ST-𝑘NN in the first round local join.

Different Values of 𝛽 . Figure 7 demonstrates the performance of

ST-𝑘NNJ with different values of 𝛽 . As shown in Fig. 7(a), when

𝛽 gets larger from 5 to 100, the execution time first drops, then

increases slightly. When 𝛽 = 20, the performance achieves the best.

It is observed that with an increasing 𝛽 , the copy amplifications of

both 𝑅 and 𝑆 get larger. This is because with a bigger 𝛽 , the area of

ACM SIGSPATIAL’21, November 02–05, 2021, Beijing, China Ruiyuan Li, et al.

 50

 100

 150

 200

 250

 300

 350

50 100 200 500 1000

E
T

 (
s)

 α

pt−pt
py−py

ls−ls
py−ls

(a) Execution Time.

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

50 100 200 500 1000

C
A

 α

pt−pt
py−py

ls−ls
py−ls

(b) Copy Amplification of 𝑅.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

50 100 200 500 1000

C
A

 α

pt−pt
py−py

ls−ls
py−ls

(c) Copy Amplification of 𝑆 .

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

50 100 200 500 1000

H
R

 α

pt−pt
py−py

ls−ls
py−ls

(d) Hit Rate.

Figure 6: Performance w.r.t. 𝛼

 50

 100

 150

 200

 250

 300

 350

 400

 450

5 10 20 50 100

E
T

 (
s)

 β

pt−pt
py−py

ls−ls
py−ls

(a) Execution Time.

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6

5 10 20 50 100

C
A

 β

pt−pt
py−py

ls−ls
py−ls

(b) Copy Amplification of 𝑅.

 1

 1.5

 2

 2.5

5 10 20 50 100

C
A

 β

pt−pt
py−py

ls−ls
py−ls

(c) Copy Amplification of 𝑆 .

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

5 10 20 50 100

H
R

 β

pt−pt
py−py

ls−ls
py−ls

(d) Hit Rate.

Figure 7: Performance w.r.t. 𝛽

 0

 100

 200

 300

 400

 500

 600

 700

10 50 200 500 1000

E
T

 (
s)

 binNum

pt−pt
py−py

ls−ls
py−ls

(a) Execution Time.

 0

 5

 10

 15

 20

 25

 30

10 50 200 500 1000

C
A

 binNum

pt−pt
py−py

ls−ls
py−ls

(b) Copy Amplification of 𝑅.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

10 50 200 500 1000

C
A

 binNum

pt−pt
py−py

ls−ls
py−ls

(c) Copy Amplification of 𝑆 .

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

10 50 200 500 1000

H
R

 binNum

pt−pt
py−py

ls−ls
py−ls

(d) Hit Rate.

Figure 8: Performance w.r.t. 𝑏𝑖𝑛𝑁𝑢𝑚

an ST-partition gets smaller, causing objects 𝑠 ∈ 𝑆 more easily to

intersect with more ST-partitions, thus the copy amplification of 𝑆

get larger, especially for the polygon data and line string data, as

shown in Fig. 7(c). Smaller ST-partitions also result in less objects

in 𝑆 assigned to the same ST-partition. This further causes objects

𝑟 ∈ 𝑅 harder to find their ST-𝑘NNs in the first round join, leading to

a lower hit rate (shown in Fig. 7(d)) and a larger copy amplification

of 𝑅 (shown in Fig. 7(b)).

Different Values of 𝑏𝑖𝑛𝑁𝑢𝑚. As depicted in Fig. 8(a), with the

increase of 𝑏𝑖𝑛𝑁𝑢𝑚, the execution time first drops significantly,

then keeps smooth with a slight increase. This is because with a big-

ger 𝑏𝑖𝑛𝑁𝑢𝑚, TRC-index can provide a more precise lower bound,

thus helps the objects 𝑟 ∈ 𝑅 more easily to find the ST-partitions

that contain their ST-𝑘NNs, reducing the copy amplification of 𝑅,

as shown in Fig. 8(b). A more precise lower bound improves the

hit rate as well, as shown in Fig. 8(d). We can observe that the

copy amplification of 𝑆 has nothing to do with 𝑏𝑖𝑛𝑁𝑢𝑚, as shown

in Fig. 8(c), because we partition 𝑆 before building TRC-indexes.

However, when 𝑏𝑖𝑛𝑁𝑢𝑚 is big enough, the execution time tends

to be stable, as the lower bound of TRC-indexes is precise enough.

Increasing 𝑏𝑖𝑛𝑁𝑢𝑚 only brings in more data transmission among

different machines. It is interesting to see that the inflection point of

pt-pt is larger than that of others (see Fig. 8(a) and Fig. 8(b)). There

could be two reasons. Firstly, for point data, it is more easy to use

the bins to calculate its real number that satisfies the temporal con-

currency requirement, because the point data in our experiments

has a time span of 0. Secondly, the NYTrip dataset has a much

bigger global temporal domain than others, which needs more bins

to capture its temporal distribution.

Different Values of 𝛿 . Figure 9 shows the impact of 𝛿 on ST-

𝑘NNJ performance. As shown in Fig. 9(a), with an increasing 𝛿 , the

execution time of complex object combinations gets larger smoothly,

as their copy amplification of 𝑅 gets smaller sightly (shown in

Fig. 9(b)), and their hit rate gets higher slightly (shown in Fig. 9(d)).

However, for pt-pt combination, the execution time first drops

significantly, then keeps stable. This is because for NYTrip dataset,

the time span of objects is 0. If 𝛿 is set too small (e.g., 𝛿 = 10),

its hit rate is very low (shown in Fig. 9(d)), causing a huge copy

amplification of 𝑅 (see Fig. 9(b)). Again, we can see from Fig. 9(c)

that the copy amplification of 𝑆 has little to do with 𝛿 .

Different Values of 𝑘 . It is observed from Fig. 10(a) that with a

bigger 𝑘 , the execution time for all combinations get larger lin-

early, because their hit rate decreases linearly (shown in Fig. 10(d)),

making their copy amplification of 𝑅 increase linearly (shown in

Fig. 10(b)). Figure 10 demonstrates that the copy amplification of 𝑅

is not affected by 𝑘 .

Execution Time of Different Steps. Figure 11(a) shows the execu-
tion time for different steps. It is observed that the first round local

join for almost all combinations is the most expensive, because we

need to build local indexes in this step. Besides, most objects 𝑟 ∈ 𝑅

can find their ST-𝑘NNs in the first round local join, which reduces

the computation of the second round local join. It is interesting to

Distributed Spatio-Temporal 𝑘 Nearest Neighbors Join ACM SIGSPATIAL’21, November 02–05, 2021, Beijing, China

 50

 100

 150

 200

 250

 300

 350

10 20 30 40 50

E
T

 (
s)

 δ

pt−pt
py−py

ls−ls
py−ls

(a) Execution Time.

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

10 20 30 40 50

C
A

 δ

pt−pt
py−py

ls−ls
py−ls

(b) Copy Amplification of 𝑅.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

10 20 30 40 50

C
A

 δ

pt−pt
py−py

ls−ls
py−ls

(c) Copy Amplification of 𝑆 .

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

10 20 30 40 50

H
R

 δ

pt−pt
py−py

ls−ls
py−ls

(d) Hit Rate.

Figure 9: Performance w.r.t. 𝛿

 50

 100

 150

 200

 250

 300

 350

1 5 10 15 20

E
T

 (
s)

 k

pt−pt
py−py

ls−ls
py−ls

(a) Execution Time.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

1 5 10 15 20

C
A

 k

pt−pt
py−py

ls−ls
py−ls

(b) Copy Amplification of 𝑅.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

1 5 10 15 20

C
A

 k

pt−pt
py−py

ls−ls
py−ls

(c) Copy Amplification of 𝑆 .

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1 5 10 15 20

H
R

 k

pt−pt
py−py

ls−ls
py−ls

(d) Hit Rate.

Figure 10: Performance w.r.t. 𝑘

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

pt−pt py−py ls−ls py−ls

E
T

 (
s)

Combinations

Step1
Step2

Step3
Step4

(a) Execution Time.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

10 20 30 40 50

E
T

 (
s)

Data Size (%)

ST−kNNJ
ST−kNNJR
ST−kNNJnr

LS
Simba

(b) Execution Time.

Figure 11: Performance w.r.t. Steps and Data Size (for the left
picture, we take 50% samples for both 𝑅 and 𝑆 ; for the right
picture, we take pt-pt because both Simba and LocationSpark
do not support complex geometries)

see that the first round local join for py-py is much less expensive

than that for other combinations. It could be the spatial distribution

of DidiSP is very sparse, and the data size of DidiSP is much smaller

than that of other datasets.

5.3 Comparing with Baselines
Figure 11(b) compares the performance of different methods. We

only focus on pt-pt because both Simba and LocationSpark do

not support complex geometries. It is not surprising that with a

bigger data size, all methods need more execution time. However,

Simba fails when the data size is greater than 10%, because it needs

to copy 𝑆 too much, resulting in memory overflow and redundant

computation. LocationSpark takes over 9Xmore time than ST-𝑘NNJ,

because it is not designed for ST-𝑘NN join. Besides, we check its

source code, and find that its proposed optimizer does not take

effect for ST-𝑘NN join. ST-𝑘NNJ is much faster than ST-𝑘NNJ𝑅 ,

the reasons could be: 1) it is more efficient to build a Quad-tree

than an R-tree; 2) R-tree ignores the unsampled areas in the spatial

partitioning step, which leads to a poor performance; 3) the ST-

partitions acquired by R-tree may intersect with each other, thus we

cannot remove duplicated results using spatio-temporal reference

points. ST-𝑘NNJ is slightly faster than ST-𝑘NN𝑛𝑟 , as we can remove

duplicates before shuffling, which reduces the data transmission

among different machines. However, the improvement is not so

significant, because the local join result transmission overhead is

relatively much smaller than the overall computation overhead.

6 RELATEDWORKS
To the best of our knowledge, none of the existing works are de-

signed for ST-𝑘NN join. We review the related works from three

aspects: 1) Spatial Join, 2) 𝑘NN Join, and 3) Spatio-Temporal Join.

Spatial Join. Spatial join combines two sets of spatial objects with a

given spatial relation, such as containing, overlapping and distance.

It has been well studied for a few decades, which can be divided into

two categories: standalone method and distributed method. Most

standalone methods [16, 31] adopt a two-phase framework, where

in the first phase, they generate candidate pairs according to the

MBRs of spatial objects, and in the second phase, they check the

spatial relationship of each pair. The work [22] provides a compre-

hensive summary of the relevant technologies. To support massive

spatial objects, many distributed frameworks are proposed for spa-

tial join, such as Hadoop-GIS [3], SpatialHadoop [14], Location-

Spark [33, 34], SpatialSpark [39], GeoSpark [40], Stark [18] and

Simba [37]. Most of these distributed frameworks first partition

the two sets, where the candidate pairs are assigned to the same

partition. In each partition, they build a local spatial index [15, 17]

and perform a spatial join using the standalone method. Finally,

they merge local spatial join results into a global one.

𝑘NN Join. Comparing to spatial join, 𝑘NN join is much more in-

tractable, as it is hard to determine whether an object is one of

𝑘NNs of the other. There are two types of methods for distributed

𝑘NN join. The first one is one-round join method [29, 30, 37, 42].

They first partition 𝑅, then copy 𝑆 to the target partitions based on

the pivots of voronoi diagram [30], the partition center points [37],

or space filling curves [29, 42], thus the 𝑘NNs of 𝑟 ∈ 𝑅 must locate

in the same partition with 𝑟 . This type of method may cause too

many copies of 𝑆 , which hinders the efficiency. The other one is

two-round join method [33, 34], which partitions 𝑆 first, then copies

𝑅 to the target partitions for twice. As most 𝑟 ∈ 𝑅 can find their

𝑘NNs in the first round, it is much more efficient than the former.

ACM SIGSPATIAL’21, November 02–05, 2021, Beijing, China Ruiyuan Li, et al.

Spatio-Temporal Join. The work [35, 36] considers both spatial

and temporal information for spatial join, called spatio-temporal

join. It employs two primary methods, i.e., broadcast join for the

case when at least one of datasets can fit entirely into memory of a

Spark executor, and bin join for the case when both datasets are too

large to fit into memory. For bin join, it first spatially partitions the

dataset using quadtree-based grid, then temporally partitions the

dataset with a temporal interval. Stark [18] adds spatio-temporal

support to Spark. It includes spatial partitioners, different indexing

modes, as well as filter, join, and clustering operators. But Stark

does not discuss how to support spatio-temporal join in the paper.

7 CONCLUSION
This paper proposes a novel and useful ST-𝑘NN join problem, which

finds the 𝑘 nearest neighbors considering both spatial closeness

and temporal concurrency. To efficiently perform ST-𝑘NN join over

big spatio-temporal data with any geometry types, we propose a

novel distributed solution based on Apache Spark, which follows

a two-round join framework. The extensive experimental results

based on three big real datasets show that our method is much more

scalable and achieves 9X faster than baselines. A demonstration

system and the source code are available at [2].

There are two main directions to polish this work. First, data par-

titioning and index construction would be performed for each new

ST-𝑘NN join request currently. We can cache some intermediate

results to avoid rebuilding all partitions and indexes from scratch

and further improve the efficiency. Second, there still some system

parameters, i.e., 𝛼 , 𝛽 and 𝑏𝑖𝑛𝑁𝑢𝑚, that may be affected by the sizes,

geometry types, or spatio-temporal distributions of datasets. It is

not easy to fine-tune them for every join manually. As a result, we

will design cost models to execute ST-𝑘NN join more intelligently.

ACKNOWLEDGMENTS
This work is supported by the National Key R&D Program of China

(2019YFB2101801) and the National Natural Science Foundation of

China (61976168, 72074172, 61872050, 62172066, 42174050). Data

sources: Illinois Data Bank and Didi Chuxing GAIA Initiative.

REFERENCES
[1] 2021. Didi Chuxing GAIA Initiative. https://gaia.didichuxing.com

[2] 2021. ST kNN Join. http://stknnjoin.urban-computing.com/.

[3] Ablimit Aji, FushengWang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xiaodong Zhang,

and Joel Saltz. 2013. Hadoop-GIS: A high performance spatial data warehousing

system over MapReduce. In PVLDB, Vol. 6. NIH Public Access.

[4] Jie Bao, Ruiyuan Li, Xiuwen Yi, and Yu Zheng. 2016. Managing massive trajecto-

ries on the cloud. In ACM SIGSPATIAL. 1–10.
[5] Ramesh Baral, SS Iyengar, Tao Li, and XiaoLong Zhu. 2018. HiCaPS: Hierarchical

contextual poi sequence recommender. In ACM SIGSPATIAL. 436–439.
[6] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.

1990. The R*-tree: An efficient and robust access method for points and rectangles.

In ACM SIGMOD. 322–331.
[7] Jon Louis Bentley. 1975. Multidimensional binary search trees used for associative

searching. Commun. ACM 18, 9 (1975), 509–517.

[8] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,

and Kostas Tzoumas. 2015. Apache flink: Stream and batch processing in a single

engine. IEEE TCDE 36, 4 (2015).

[9] Lu Chen, Yunjun Gao, Ziquan Fang, Xiaoye Miao, Christian S Jensen, and Chen-

juan Guo. 2019. Real-time distributed co-movement pattern detection on stream-

ing trajectories. PVLDB 12, 10 (2019), 1208–1220.

[10] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 2009.

Introduction to algorithms. MIT press.

[11] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified data processing

on large clusters. (2004).

[12] Brian Donovan and Dan Work. 2016. New York City Taxi Trip Data (2010-2013).

https://doi.org/10.13012/J8PN93H8

[13] Jean Dubé and Diègo Legros. 2013. A spatio-temporal measure of spatial depen-

dence: An example using real estate data. Papers in Regional Science 92, 1 (2013),
19–30.

[14] Ahmed Eldawy and Mohamed F Mokbel. 2015. Spatialhadoop: A mapreduce

framework for spatial data. In ICDE. IEEE, 1352–1363.
[15] Raphael A. Finkel and Jon Louis Bentley. 1974. Quad trees a data structure for

retrieval on composite keys. Acta informatica 4, 1 (1974), 1–9.
[16] Oliver Gunther. 1993. Efficient computation of spatial joins. In ICDE. IEEE, 50–59.
[17] Antonin Guttman. 1984. R-trees: A dynamic index structure for spatial searching.

In ACM SIGMOD. 47–57.
[18] Stefan Hagedorn, Philipp Gotze, and Kai-Uwe Sattler. 2017. The STARK frame-

work for spatio-temporal data analytics on spark. BTW (2017).

[19] Huajun He, Ruiyuan Li, Jie Bao, Tianrui Li, and Yu Zheng. 2021. JUST-Traj: A

Distributed and Holistic Trajectory Data Management System. In ACM SIGSPA-
TIAL.

[20] Huajun He, Ruiyuan Li, Rubin Wang, Jie Bao, Yu Zheng, and Tianrui Li. 2020. Ef-

ficient suspected infected crowds detection based on spatio-temporal trajectories.

arXiv preprint arXiv:2004.06653 (2020).
[21] Yue Hu, Sijie Ruan, Yuting Ni, Huajun He, Jie Bao, Ruiyuan Li, and Yu Zheng.

2021. SALON: A Universal Stay Point-Based Location Analysis Platform. In ACM
SIGSPATIAL.

[22] Edwin H Jacox and Hanan Samet. 2007. Spatial join techniques. ACM TODS 32,
1 (2007), 7–es.

[23] Quannan Li, Yu Zheng, Xing Xie, and et al. 2008. Mining user similarity based

on location history. In ACM SIGSPATIAL. 1–10.
[24] Ruiyuan Li, Huajun He, Rubin Wang, Yuchuan Huang, Junwen Liu, Sijie Ruan,

Tianfu He, Jie Bao, and Yu Zheng. 2020. Just: Jd urban spatio-temporal data

engine. In ICDE. IEEE, 1558–1569.
[25] Ruiyuan Li, Huajun He, Rubin Wang, Sijie Ruan, Tianfu He, Jie Bao, Junbo

Zhang, Liang Hong, and Yu Zheng. 2021. TrajMesa: A Distributed NoSQL-Based

Trajectory Data Management System. TKDE (2021).

[26] Ruiyuan Li, Huajun He, Rubin Wang, Sijie Ruan, Yuan Sui, Jie Bao, and Yu Zheng.

2020. Trajmesa: A distributed nosql storage engine for big trajectory data. In

ICDE. IEEE, 2002–2005.
[27] Ruiyuan Li, Sijie Ruan, Jie Bao, and Yu Zheng. 2017. A cloud-based trajectory

data management system. In ACM SIGSPATIAL. 1–4.
[28] Chang Liu, Jiahui Sun, Haiming Jin, Meng Ai, Qun Li, Cheng Zhang, Kehua Sheng,

Guobin Wu, Xiaohu Qie, and Xinbing Wang. 2020. Spatio-Temporal Hierarchical

Adaptive Dispatching for Ridesharing Systems. In ACM SIGSPATIAL. 227–238.
[29] Y Liu, N Jing, L Chen, and W Xiong. 2013. Algorithm for processing k-nearest

join based on r-tree in mapreduce. Journal of Software 24, 8 (2013), 1836–1851.
[30] Wei Lu, Yanyan Shen, Su Chen, and Beng Chin Ooi. 2012. Efficient processing of

k nearest neighbor joins using mapreduce. arXiv preprint arXiv:1207.0141 (2012).
[31] Jack A Orenstein. 1989. Strategies for optimizing the use of redundancy in spatial

databases. In Symposium on Large Spatial Databases. Springer, 115–134.
[32] Franco P Preparata and Michael I Shamos. 2012. Computational geometry: an

introduction. Springer Science & Business Media.

[33] Mingjie Tang, Yongyang Yu, Ahmed R Mahmood, Qutaibah M Malluhi, Mourad

Ouzzani, and Walid G Aref. 2020. Locationspark: in-memory distributed spatial

query processing and optimization. Frontiers in Big Data 3 (2020), 30.
[34] Mingjie Tang, Yongyang Yu, Qutaibah M Malluhi, Mourad Ouzzani, and Walid G

Aref. 2016. Locationspark: A distributed in-memory data management system

for big spatial data. PVLDB 9, 13 (2016), 1565–1568.

[35] Randall T Whitman, Bryan G Marsh, Michael B Park, and Erik G Hoel. 2019.

Distributed spatial and spatio-temporal join on apache spark. ACM TSAS 5, 1

(2019), 1–28.

[36] Randall T Whitman, Michael B Park, Bryan G Marsh, and Erik G Hoel. 2017.

Spatio-temporal join on apache spark. In ACM SIGSPATIAL. 1–10.
[37] Dong Xie, Feifei Li, Bin Yao, Gefei Li, Liang Zhou, and Minyi Guo. 2016. Simba:

Efficient in-memory spatial analytics. In ACM SIGMOD. 1071–1085.
[38] Keyu Yang, Xin Ding, Yuanliang Zhang, Lu Chen, Baihua Zheng, and Yunjun Gao.

2019. Distributed similarity queries in metric spaces. DSE 4, 2 (2019), 93–108.

[39] Simin You, Jianting Zhang, and Le Gruenwald. 2015. Large-scale spatial join

query processing in cloud. In ICDE workshops. IEEE, 34–41.
[40] Jia Yu, Jinxuan Wu, and Mohamed Sarwat. 2015. Geospark: A cluster computing

framework for processing large-scale spatial data. In ACM SIGSPATIAL. 1–4.
[41] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,

Murphy McCauly, Michael J Franklin, Scott Shenker, and Ion Stoica. 2012. Re-

silient distributed datasets: A fault-tolerant abstraction for in-memory cluster

computing. In NSDI. 15–28.
[42] Chi Zhang, Feifei Li, and Jeffrey Jestes. 2012. Efficient parallel knn joins for large

data in mapreduce. In EDBT. 38–49.
[43] Qing Zhu, Jun Gong, and Yeting Zhang. 2007. An efficient 3D R-tree spatial index

method for virtual geographic environments. ISPRS 62, 3 (2007), 217–224.

https://gaia.didichuxing.com
https://doi.org/10.13012/J8PN93H8

Distributed Spatio-Temporal 𝑘 Nearest Neighbors Join ACM SIGSPATIAL’21, November 02–05, 2021, Beijing, China

A SYMBOLS AND THEIR MEANINGS
For the purpose of reference, Table 4 lists the symbols and their

meanings used frequently in this paper.

Table 4: Symbols and Their Meanings
Symbol Meaning
𝑅 (resp. 𝑆) an ST-object set 𝑅 (resp. 𝑆)

𝑟 (resp. 𝑠)
an ST-object 𝑟 ∈ 𝑅 (resp. 𝑠 ∈ 𝑆), where 𝑟 .𝑔𝑒𝑜𝑚 is a

spatial attribute, 𝑟 .𝑡𝑟 = [𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥] is a time range

𝑀𝐵𝑅(𝑟) the minimum bounding box of 𝑟

𝐸𝑀𝐵𝑅(𝑟,𝛾) the expanded minimum bounding rectangle of 𝑟

w.r.t a distance threshold 𝛾

𝑇𝐷 (𝑅) the temporal domain of 𝑅

𝑆𝐷 (𝑅) the spatial domain of 𝑅

𝐸𝑇𝑅(𝑡𝑟, 𝛿) expanded time range of 𝑡𝑟 with a time threshold 𝛿

ST-𝑘NN the spatio-temporal 𝑘 nearest neighbors of 𝑟

(𝑟, 𝑘, 𝛿, 𝑆) from 𝑆 with a time threshold 𝛿

𝑑 (𝑟, 𝑠), the distance between 𝑟 and 𝑠 , and the Euclidean

𝑑 (𝑝, 𝑞) distance between two spatial points 𝑝 and 𝑞

𝑅 n 𝑆 ST-𝑘NN join of 𝑅 and 𝑆

𝐺𝑇,𝐺𝑆 global temporal domain, global spatial domain

𝜂, 𝛼 , 𝛽
sampling rate, maximum number of temporal

partitions, maximum number of spatial partitions

𝑡𝑝 , 𝑠𝑝 , 𝐺𝐼 temporal partitions, spatial partitions, global index

TRC-index temporal range count index

𝑏𝑖𝑛𝑁𝑢𝑚 bin number in a TRC-index

TRP, SRP temporal reference point, spatial reference point

B DETAILS OF COMPLEXITY ANALYSIS
In this section, we give more details of complexity analysis.

Data Partition for 𝑆 . Recall that this step can be divided into

four sub-steps: 1) Sampling, 2) Temporal Partitioning, 3) Spatial
Partitioning, and 4) Reassignment.

The cost of Sampling can be ignored, as the number of samples

is rather small and there is no other computation cost.

For Temporal Partitioning (i.e., Algorithm 1), it first sorts the sam-

ples in 𝑆 ′, then scans them only once. Therefore, the overall com-

putation complexity of Temporal Partitioning is O(|𝑆 ′ | × 𝑙𝑜𝑔 |𝑆 ′ |).
The most time-consuming part of Algorithm 2 is the While loop.

As in each iteration, we add 3 more spatial partitions, thus there is

at most 𝛽/3 iterations. In each iteration, we need to scan at most |𝑆 ′
𝑖
|

samples, and each new sub-node takes at most 𝑙𝑜𝑔𝛽 to be inserted

into 𝑝𝑞. As a result, the computation complexity of Algorithm 2 is

O(𝛽/3× (|𝑆 ′
𝑖
| +4× 𝑙𝑜𝑔𝛽)). Because 𝑆 ′ = 𝑆 ′

1
∪𝑆 ′

2
∪ ...∪𝑆 ′𝑛 , 𝑛 ≤ 𝛼 , the

overall computation cost of spatial partitioning is O(𝛽/3 × |𝑆 ′ | +
4/3 × 𝛼 × 𝛽 × 𝑙𝑜𝑔𝛽).

For Reassignment, it incurs a shuffle of 𝑆 , thus it can be a bottle-

neck of ST-𝑘NN join. As the size of global index𝐺𝐼 is very small,

the overhead of broadcast can be ignored. Using the global index

𝐺𝐼 , each 𝑠 ∈ 𝑆 can find the targeted partitions in O(𝑙𝑜𝑔𝛼 × 𝑙𝑜𝑔𝛽).
Therefore, the time complexity of this step is O(|𝑆 | × 𝑙𝑜𝑔𝛼 × 𝑙𝑜𝑔𝛽).
First Round Local Join. Note that this step consists of three

sub-steps: 1) TRC-index Construction, 2) Data Partition for 𝑅, and
3) Distance Bound Calculation.

TRC-index Construction method (i.e., Algorithm 3) scans linearly

objects of 𝑆𝑖 and the two arrays (𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥) for once. As

𝑏𝑖𝑛𝑁𝑢𝑚 is relatively much smaller than 𝑆𝑖 , the overall computa-

tion for all ST-partitions is O(|𝑆 |). The search complexity using

TRC-index is O(1).
For each 𝑟 ∈ 𝑅, we find𝑢 satisfied temporal partitions in O(𝑙𝑜𝑔𝛼).

For each satisfied temporal partition, we find the target ST-partition

in O(𝑙𝑜𝑔𝛽). Consequently, the overall computation complexity of

this sub-step is O(|𝑅 | × 𝑙𝑜𝑔𝛼 ×𝑢 × 𝑙𝑜𝑔𝛽). This step triggers a shuffle

of 𝑅, thus it could be a bottleneck.

For Distance Bound Calculation, building a local R-tree index

takes O(|𝑆𝑖 | × 𝑙𝑜𝑔|𝑆𝑖 |). The time complexity of finding the ST-𝑘NNs

of 𝑅𝑖 using R-tree is highly dependent on the data distribution. In

most cases, it can be done with O(|𝑅𝑖 | × 𝑙𝑜𝑔 |𝑆𝑖 |).
Second Round Local Join. There is only a small number of objects

𝑟 ∈ 𝑅 that participate in the second round local join. For each 𝑟 ∈ 𝑅,

it takes the same time with that in the first round local join.

Merge Result. This step incurs a shuffle of local results. Suppose

each 𝑟 ∈ 𝑅 is bounded to 𝑣 ST-partitions, thus the multiway merge

algorithm takes O(𝑣 × 𝑘). The overall time complexity of merge

result is O(|𝑅 | × 𝑣 × 𝑘).

C DEMONSTRATION
We integrate the ST-𝑘NN join method proposed in this paper into

JUST [24], a distributed spatio-temporal data engine. As a result,

we can perform ST-𝑘NN join with a SQL-like statement:

SELECT * FROM 𝑅, 𝑆 WHERE st_knnjoin(𝑅.𝑔𝑒𝑜𝑚, 𝑆.𝑔𝑒𝑜𝑚,
𝑅.𝑡𝑚𝑖𝑛, 𝑅.𝑡𝑚𝑎𝑥, 𝑆.𝑡𝑚𝑖𝑛, 𝑆.𝑡𝑚𝑎𝑥, 𝑘, 𝛿)

where 𝑅 and 𝑆 are the names of two tables, and 𝑅.𝑔𝑒𝑜𝑚, 𝑆.𝑔𝑒𝑜𝑚,

𝑅.𝑡𝑚𝑖𝑛 , 𝑅.𝑡𝑚𝑎𝑥 , 𝑆.𝑡𝑚𝑖𝑛 , 𝑆.𝑡𝑚𝑎𝑥 are the spatio-temporal field names

of the two tables, respectively.

Table Panel

JustQL Panel

Result Panel

Figure 12: User Interface of JUST for ST-𝑘NN Join [2].

Figure 12 shows the user interface of ST-𝑘NN join in JUST. It

consists of three panels: Table Panel, JustQL Panel and Result Panel.
Table Panel lists the tables in the system. In this demo, we preset six

tables of spatio-temporal objects with various geometry types. The

objects are sampled from the datasets of DidiTraj and DidiSP. Users

can also upload their own datasets to JUST. In the JustQL Panel, we

input a SQL-like statement, and click the first left-top button to run

ST-𝑘NN join. Here, we perform an ST-𝑘NN join on two point tables

𝑝𝑜𝑖𝑛𝑡01 and 𝑝𝑜𝑖𝑛𝑡02, where 𝑘 = 2 and 𝛿 = 100s. The join result

is shown in Result Panel. Readers can visit the public website [2]

to experience ST-𝑘NN join, or download the source code from the

website and run it on their own clusters.

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Definition
	2.2 Apache Spark

	3 Overview
	4 ST-kNN Join
	4.1 Data Partition for S
	4.2 First Round Local Join
	4.3 Second Round Local Join
	4.4 Merge Result
	4.5 Performance Analysis

	5 Evaluation
	5.1 Datasets and Settings
	5.2 Parameters Tuning
	5.3 Comparing with Baselines

	6 Related Works
	7 Conclusion
	Acknowledgments
	References
	A Symbols and Their Meanings
	B Details of Complexity Analysis
	C Demonstration

